amine_dubs
commited on
Commit
·
aded6a5
1
Parent(s):
decdde7
main
Browse files- backend/main.py +181 -38
backend/main.py
CHANGED
@@ -9,6 +9,8 @@ import json
|
|
9 |
import traceback
|
10 |
import io
|
11 |
import concurrent.futures
|
|
|
|
|
12 |
|
13 |
# Import transformers for local model inference
|
14 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
@@ -66,47 +68,71 @@ def initialize_model():
|
|
66 |
model_name = "google/flan-t5-small"
|
67 |
|
68 |
# Check for available device - properly detect CPU/GPU
|
69 |
-
device =
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
# Load the tokenizer with explicit cache directory
|
|
|
73 |
tokenizer = AutoTokenizer.from_pretrained(
|
74 |
model_name,
|
75 |
cache_dir="/tmp/transformers_cache"
|
76 |
)
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
# Load the model with
|
|
|
79 |
try:
|
80 |
-
print("Loading model with PyTorch backend...")
|
81 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
82 |
model_name,
|
83 |
cache_dir="/tmp/transformers_cache",
|
84 |
-
low_cpu_mem_usage=True, #
|
85 |
-
|
86 |
)
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
-
print(f"
|
89 |
-
print("
|
90 |
-
|
91 |
-
model_name,
|
92 |
-
from_tf=True,
|
93 |
-
cache_dir="/tmp/transformers_cache"
|
94 |
-
)
|
95 |
|
96 |
# Create a pipeline with the loaded model and tokenizer
|
97 |
-
print("Creating pipeline
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
-
print(f"
|
110 |
traceback.print_exc()
|
111 |
return False
|
112 |
|
@@ -276,22 +302,139 @@ async def read_root(request: Request):
|
|
276 |
return templates.TemplateResponse("index.html", {"request": request})
|
277 |
|
278 |
@app.post("/translate/text")
|
279 |
-
async def
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
287 |
|
288 |
try:
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
except Exception as e:
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
@app.post("/translate/document")
|
297 |
async def translate_document_endpoint(
|
|
|
9 |
import traceback
|
10 |
import io
|
11 |
import concurrent.futures
|
12 |
+
import subprocess
|
13 |
+
import sys
|
14 |
|
15 |
# Import transformers for local model inference
|
16 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
|
68 |
model_name = "google/flan-t5-small"
|
69 |
|
70 |
# Check for available device - properly detect CPU/GPU
|
71 |
+
device = "cpu" # Default to CPU which is more reliable
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
device = "cuda"
|
74 |
+
print(f"CUDA is available: {torch.cuda.get_device_name(0)}")
|
75 |
+
print(f"Device set to use: {device}")
|
76 |
|
77 |
# Load the tokenizer with explicit cache directory
|
78 |
+
print(f"Loading tokenizer from {model_name}...")
|
79 |
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
model_name,
|
81 |
cache_dir="/tmp/transformers_cache"
|
82 |
)
|
83 |
+
if tokenizer is None:
|
84 |
+
print("Failed to load tokenizer")
|
85 |
+
return False
|
86 |
+
print("Tokenizer loaded successfully")
|
87 |
|
88 |
+
# Load the model with explicit device placement
|
89 |
+
print(f"Loading model from {model_name}...")
|
90 |
try:
|
|
|
91 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
92 |
model_name,
|
93 |
cache_dir="/tmp/transformers_cache",
|
94 |
+
low_cpu_mem_usage=True, # Better memory usage
|
95 |
+
torch_dtype=torch.float32 # Explicit dtype for better compatibility
|
96 |
)
|
97 |
+
# Move model to device after loading
|
98 |
+
model = model.to(device)
|
99 |
+
print(f"Model loaded with PyTorch and moved to {device}")
|
100 |
except Exception as e:
|
101 |
+
print(f"Error loading model: {e}")
|
102 |
+
print("Model initialization failed")
|
103 |
+
return False
|
|
|
|
|
|
|
|
|
104 |
|
105 |
# Create a pipeline with the loaded model and tokenizer
|
106 |
+
print("Creating translation pipeline...")
|
107 |
+
try:
|
108 |
+
# Create the pipeline with explicit model and tokenizer
|
109 |
+
translator = pipeline(
|
110 |
+
"text2text-generation",
|
111 |
+
model=model,
|
112 |
+
tokenizer=tokenizer,
|
113 |
+
device=0 if device == "cuda" else -1, # Proper device mapping
|
114 |
+
framework="pt" # Explicitly use PyTorch
|
115 |
+
)
|
116 |
+
|
117 |
+
if translator is None:
|
118 |
+
print("Failed to create translator pipeline")
|
119 |
+
return False
|
120 |
+
|
121 |
+
# Test the model with a simple translation to verify it works
|
122 |
+
test_result = translator("Translate from English to French: hello", max_length=128)
|
123 |
+
print(f"Model test result: {test_result}")
|
124 |
+
if not test_result or not isinstance(test_result, list) or len(test_result) == 0:
|
125 |
+
print("Model test failed: Invalid output format")
|
126 |
+
return False
|
127 |
+
|
128 |
+
print(f"Model {model_name} successfully initialized and tested")
|
129 |
+
return True
|
130 |
+
except Exception as inner_e:
|
131 |
+
print(f"Error creating translation pipeline: {inner_e}")
|
132 |
+
traceback.print_exc()
|
133 |
+
return False
|
134 |
except Exception as e:
|
135 |
+
print(f"Critical error initializing model: {e}")
|
136 |
traceback.print_exc()
|
137 |
return False
|
138 |
|
|
|
302 |
return templates.TemplateResponse("index.html", {"request": request})
|
303 |
|
304 |
@app.post("/translate/text")
|
305 |
+
async def translate_text(request: TranslationRequest):
|
306 |
+
global translator, model, tokenizer
|
307 |
+
|
308 |
+
source_lang = request.source_lang
|
309 |
+
target_lang = request.target_lang
|
310 |
+
text = request.text
|
311 |
+
|
312 |
+
print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
|
313 |
+
|
314 |
+
translation_result = ""
|
315 |
+
error_message = None
|
316 |
|
317 |
try:
|
318 |
+
# Check if translator is initialized, if not, initialize it
|
319 |
+
if translator is None:
|
320 |
+
print("Translator not initialized. Attempting to initialize model...")
|
321 |
+
success = initialize_model()
|
322 |
+
if not success:
|
323 |
+
raise Exception("Failed to initialize translation model")
|
324 |
+
|
325 |
+
# Format the prompt for the model
|
326 |
+
lang_code_map = {
|
327 |
+
"en": "English", "es": "Spanish", "fr": "French", "de": "German",
|
328 |
+
"zh": "Chinese", "ja": "Japanese", "ko": "Korean", "ar": "Arabic",
|
329 |
+
"ru": "Russian", "pt": "Portuguese", "it": "Italian", "nl": "Dutch"
|
330 |
+
}
|
331 |
+
|
332 |
+
source_lang_name = lang_code_map.get(source_lang.lower(), source_lang)
|
333 |
+
target_lang_name = lang_code_map.get(target_lang.lower(), target_lang)
|
334 |
+
|
335 |
+
# Create a proper prompt for instruction-based models
|
336 |
+
prompt = f"Translate from {source_lang_name} to {target_lang_name}: {text}"
|
337 |
+
print(f"Using prompt: {prompt}")
|
338 |
+
|
339 |
+
# Check that translator is callable before proceeding
|
340 |
+
if not callable(translator):
|
341 |
+
print("Translator is not callable, attempting to reinitialize")
|
342 |
+
success = initialize_model()
|
343 |
+
if not success or not callable(translator):
|
344 |
+
raise Exception("Translator is not callable after reinitialization")
|
345 |
+
|
346 |
+
# Use a thread pool to execute the translation with a timeout
|
347 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
348 |
+
future = executor.submit(
|
349 |
+
lambda: translator(
|
350 |
+
prompt,
|
351 |
+
max_length=512,
|
352 |
+
do_sample=False,
|
353 |
+
temperature=0.7
|
354 |
+
)
|
355 |
+
)
|
356 |
+
|
357 |
+
try:
|
358 |
+
result = future.result(timeout=15)
|
359 |
+
translation_result = result[0]["generated_text"]
|
360 |
+
|
361 |
+
# Clean up the output - remove any prefix like "Translation:"
|
362 |
+
prefixes = ["Translation:", "Translation: ", f"{target_lang_name}:", f"{target_lang_name}: "]
|
363 |
+
for prefix in prefixes:
|
364 |
+
if translation_result.startswith(prefix):
|
365 |
+
translation_result = translation_result[len(prefix):].strip()
|
366 |
+
|
367 |
+
print(f"Local model translation result: {translation_result}")
|
368 |
+
except concurrent.futures.TimeoutError:
|
369 |
+
print("Translation timed out after 15 seconds")
|
370 |
+
raise Exception("Translation timed out")
|
371 |
+
except Exception as e:
|
372 |
+
print(f"Error using local model: {str(e)}")
|
373 |
+
raise Exception(f"Error using local model: {str(e)}")
|
374 |
+
|
375 |
except Exception as e:
|
376 |
+
error_message = str(e)
|
377 |
+
print(f"Error using local model: {error_message}")
|
378 |
+
|
379 |
+
# Try the fallback options
|
380 |
+
try:
|
381 |
+
# Install googletrans if not present
|
382 |
+
try:
|
383 |
+
import googletrans
|
384 |
+
except ImportError:
|
385 |
+
print("Installing googletrans package...")
|
386 |
+
subprocess.call([sys.executable, "-m", "pip", "install", "googletrans==4.0.0-rc1"])
|
387 |
+
|
388 |
+
# Try LibreTranslate providers
|
389 |
+
libre_apis = [
|
390 |
+
"https://translate.terraprint.co/translate",
|
391 |
+
"https://libretranslate.de/translate",
|
392 |
+
"https://translate.argosopentech.com/translate",
|
393 |
+
"https://translate.fedilab.app/translate"
|
394 |
+
]
|
395 |
+
|
396 |
+
for api_url in libre_apis:
|
397 |
+
try:
|
398 |
+
print(f"Attempting fallback translation using LibreTranslate: {api_url}")
|
399 |
+
payload = {
|
400 |
+
"q": text,
|
401 |
+
"source": source_lang,
|
402 |
+
"target": target_lang,
|
403 |
+
"format": "text",
|
404 |
+
"api_key": ""
|
405 |
+
}
|
406 |
+
headers = {"Content-Type": "application/json"}
|
407 |
+
response = requests.post(api_url, json=payload, headers=headers, timeout=5)
|
408 |
+
|
409 |
+
if response.status_code == 200:
|
410 |
+
result = response.json()
|
411 |
+
if "translatedText" in result:
|
412 |
+
translation_result = result["translatedText"]
|
413 |
+
print(f"LibreTranslate successful: {translation_result}")
|
414 |
+
break
|
415 |
+
except Exception as libre_error:
|
416 |
+
print(f"Error with LibreTranslate {api_url}: {str(libre_error)}")
|
417 |
+
|
418 |
+
# If LibreTranslate failed, try Google Translate
|
419 |
+
if not translation_result:
|
420 |
+
try:
|
421 |
+
print("Attempting fallback with Google Translate (no API key)")
|
422 |
+
from googletrans import Translator
|
423 |
+
google_translator = Translator()
|
424 |
+
result = google_translator.translate(text, src=source_lang, dest=target_lang)
|
425 |
+
translation_result = result.text
|
426 |
+
print(f"Google Translate successful: {translation_result}")
|
427 |
+
except Exception as google_error:
|
428 |
+
print(f"Error with Google Translate fallback: {str(google_error)}")
|
429 |
+
|
430 |
+
except Exception as fallback_error:
|
431 |
+
print(f"All fallback translation methods failed: {str(fallback_error)}")
|
432 |
+
|
433 |
+
# If all translation attempts failed
|
434 |
+
if not translation_result:
|
435 |
+
return {"success": False, "error": error_message or "All translation methods failed"}
|
436 |
+
|
437 |
+
return {"success": True, "translation": translation_result}
|
438 |
|
439 |
@app.post("/translate/document")
|
440 |
async def translate_document_endpoint(
|