amine_dubs
commited on
Commit
·
be03516
1
Parent(s):
dbe4e2f
error
Browse files- backend/main.py +178 -42
backend/main.py
CHANGED
@@ -4,11 +4,12 @@ from fastapi.staticfiles import StaticFiles
|
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from typing import List, Optional
|
6 |
import shutil
|
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
-
#
|
9 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
10 |
-
import torch # Ensure torch is imported if using generate directly
|
11 |
-
import traceback # Ensure traceback is imported
|
12 |
|
13 |
# --- Configuration ---
|
14 |
# Determine the base directory of the main.py script
|
@@ -29,36 +30,150 @@ app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
|
29 |
# Ensure the templates directory exists (FastAPI doesn't create it)
|
30 |
templates = Jinja2Templates(directory=TEMPLATE_DIR)
|
31 |
|
32 |
-
# --- Model Loading ---
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
MODEL_NAME = "google/flan-t5-small"
|
36 |
-
CACHE_DIR = "/app/.cache" # Explicitly define cache directory
|
37 |
model = None
|
38 |
tokenizer = None
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
print(f"Loading model for {MODEL_NAME} using AutoModelForSeq2SeqLM...")
|
46 |
-
# Use AutoModelForSeq2SeqLM and specify cache_dir
|
47 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
48 |
-
print("--- Model Loaded Successfully ---")
|
49 |
except Exception as e:
|
50 |
-
print(f"
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# --- Helper Functions ---
|
56 |
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
|
57 |
-
"""Internal function to handle text translation using the loaded model
|
|
|
|
|
58 |
if model is None or tokenizer is None:
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
# --- Enhanced Prompt Engineering ---
|
63 |
# Map source language codes to full language names for better model understanding
|
64 |
language_map = {
|
@@ -93,24 +208,43 @@ Text to translate:
|
|
93 |
print(f"Translation Request - Source Lang: {source_lang} ({source_lang_name}), Target Lang: {target_lang}")
|
94 |
print(f"Using Enhanced Prompt for Balagha and Cultural Sensitivity")
|
95 |
|
96 |
-
# ---
|
97 |
try:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
print(f"Raw Translation Output: {translated_text}")
|
116 |
return translated_text
|
@@ -118,7 +252,9 @@ Text to translate:
|
|
118 |
except Exception as e:
|
119 |
print(f"Error during model generation: {e}")
|
120 |
traceback.print_exc()
|
121 |
-
|
|
|
|
|
122 |
|
123 |
# --- Function to extract text ---
|
124 |
async def extract_text_from_file(file: UploadFile) -> str:
|
|
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from typing import List, Optional
|
6 |
import shutil
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, MarianMTModel, MarianTokenizer
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import time # For retries
|
11 |
import os
|
12 |
+
import requests # For direct API access as final fallback
|
|
|
|
|
|
|
13 |
|
14 |
# --- Configuration ---
|
15 |
# Determine the base directory of the main.py script
|
|
|
30 |
# Ensure the templates directory exists (FastAPI doesn't create it)
|
31 |
templates = Jinja2Templates(directory=TEMPLATE_DIR)
|
32 |
|
33 |
+
# --- Model Loading Strategy ---
|
34 |
+
# Define model options in order of preference
|
35 |
+
MODEL_OPTIONS = [
|
36 |
+
{"name": "google/flan-t5-small", "type": "flan-t5"},
|
37 |
+
{"name": "Helsinki-NLP/opus-mt-en-ar", "type": "marian"},
|
38 |
+
{"name": "t5-small", "type": "t5-fallback"} # Smaller, more commonly available model
|
39 |
+
]
|
40 |
|
41 |
+
CACHE_DIR = "/app/.cache"
|
|
|
|
|
42 |
model = None
|
43 |
tokenizer = None
|
44 |
|
45 |
+
# Set environment variables for cache locations
|
46 |
+
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
47 |
+
os.environ["HF_HOME"] = CACHE_DIR
|
48 |
+
print(f"Cache directories set to: {CACHE_DIR}")
|
49 |
+
print(f"Environment TRANSFORMERS_CACHE: {os.environ.get('TRANSFORMERS_CACHE')}")
|
50 |
+
print(f"Environment HF_HOME: {os.environ.get('HF_HOME')}")
|
51 |
+
|
52 |
+
# Create cache directory with explicit permissions
|
53 |
try:
|
54 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
55 |
+
# Ensure the cache directory is writeable - set permissive permissions
|
56 |
+
os.chmod(CACHE_DIR, 0o777) # Read/write/execute for all
|
57 |
+
print(f"Cache directory {CACHE_DIR} created with full permissions")
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
+
print(f"Warning: Could not set permissions on cache dir: {e}")
|
60 |
+
|
61 |
+
# Try each model in order until one loads successfully
|
62 |
+
for model_option in MODEL_OPTIONS:
|
63 |
+
MODEL_NAME = model_option["name"]
|
64 |
+
MODEL_TYPE = model_option["type"]
|
65 |
+
|
66 |
+
print(f"--- Attempting to load model: {MODEL_NAME} (Type: {MODEL_TYPE}) ---")
|
67 |
+
|
68 |
+
# Try to load with retries
|
69 |
+
max_retries = 3
|
70 |
+
for attempt in range(max_retries):
|
71 |
+
try:
|
72 |
+
if MODEL_TYPE == "flan-t5" or MODEL_TYPE == "t5-fallback":
|
73 |
+
print(f"Loading with AutoTokenizer/AutoModelForSeq2SeqLM (Attempt {attempt+1}/{max_retries})")
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
75 |
+
MODEL_NAME,
|
76 |
+
cache_dir=CACHE_DIR,
|
77 |
+
local_files_only=False, # Force online download
|
78 |
+
resume_download=True # Resume if download was interrupted
|
79 |
+
)
|
80 |
+
|
81 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
82 |
+
MODEL_NAME,
|
83 |
+
cache_dir=CACHE_DIR,
|
84 |
+
local_files_only=False, # Force online download
|
85 |
+
resume_download=True # Resume if download was interrupted
|
86 |
+
)
|
87 |
+
elif MODEL_TYPE == "marian":
|
88 |
+
print(f"Loading with MarianTokenizer/MarianMTModel (Attempt {attempt+1}/{max_retries})")
|
89 |
+
tokenizer = MarianTokenizer.from_pretrained(
|
90 |
+
MODEL_NAME,
|
91 |
+
cache_dir=CACHE_DIR,
|
92 |
+
local_files_only=False,
|
93 |
+
resume_download=True
|
94 |
+
)
|
95 |
+
|
96 |
+
model = MarianMTModel.from_pretrained(
|
97 |
+
MODEL_NAME,
|
98 |
+
cache_dir=CACHE_DIR,
|
99 |
+
local_files_only=False,
|
100 |
+
resume_download=True
|
101 |
+
)
|
102 |
+
|
103 |
+
print(f"--- Successfully loaded model: {MODEL_NAME} ---")
|
104 |
+
break # Break out of retry loop if successful
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error loading model {MODEL_NAME} (Attempt {attempt+1}): {e}")
|
108 |
+
traceback.print_exc()
|
109 |
+
|
110 |
+
if attempt < max_retries - 1:
|
111 |
+
wait_time = 2 * (attempt + 1) # Exponential backoff
|
112 |
+
print(f"Waiting {wait_time} seconds before retry...")
|
113 |
+
time.sleep(wait_time)
|
114 |
+
else:
|
115 |
+
print(f"Failed to load model {MODEL_NAME} after {max_retries} attempts.")
|
116 |
+
|
117 |
+
if model is not None and tokenizer is not None:
|
118 |
+
# If we successfully loaded a model, break out of the model options loop
|
119 |
+
break
|
120 |
+
|
121 |
+
# --- Fallback Translation Logic ---
|
122 |
+
# If we couldn't load any model, we'll set up a simple fallback system
|
123 |
+
|
124 |
+
# Define a simple dictionary for common phrases (just as a last resort)
|
125 |
+
FALLBACK_PHRASES = {
|
126 |
+
"hello": "مرحبا",
|
127 |
+
"thank you": "شكرا لك",
|
128 |
+
"goodbye": "مع السلامة",
|
129 |
+
"welcome": "أهلا وسهلا",
|
130 |
+
}
|
131 |
+
|
132 |
+
def fallback_translate(text, source_lang):
|
133 |
+
"""Last resort fallback translation if all models fail to load."""
|
134 |
+
print("Using emergency fallback translation (very limited capability)")
|
135 |
+
|
136 |
+
# For longer text, try direct API call to a free translation service
|
137 |
+
try:
|
138 |
+
# Try to use LibreTranslate API as fallback (no API key needed for some instances)
|
139 |
+
url = "https://translate.terraprint.co/translate"
|
140 |
+
|
141 |
+
payload = {
|
142 |
+
"q": text,
|
143 |
+
"source": source_lang if source_lang != "auto" else "auto",
|
144 |
+
"target": "ar",
|
145 |
+
"format": "text"
|
146 |
+
}
|
147 |
+
|
148 |
+
headers = {"Content-Type": "application/json"}
|
149 |
+
|
150 |
+
print("Attempting LibreTranslate API call...")
|
151 |
+
response = requests.post(url, json=payload, headers=headers)
|
152 |
+
|
153 |
+
if response.status_code == 200:
|
154 |
+
result = response.json()
|
155 |
+
print("LibreTranslate API call successful")
|
156 |
+
return result.get("translatedText", f"[Translation Error: {response.text}]")
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
print(f"LibreTranslate API call failed: {e}")
|
160 |
+
|
161 |
+
# If that fails too, use our minimal dictionary
|
162 |
+
if text.lower() in FALLBACK_PHRASES:
|
163 |
+
return FALLBACK_PHRASES[text.lower()]
|
164 |
+
|
165 |
+
# For unknown text, return a message in Arabic explaining the issue
|
166 |
+
return "عذراً، لم نتمكن من تحميل نموذج الترجمة. هذه ترجمة محدودة جداً." # "Sorry, we couldn't load the translation model. This is a very limited translation."
|
167 |
|
168 |
# --- Helper Functions ---
|
169 |
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
|
170 |
+
"""Internal function to handle text translation using the loaded model or fallbacks."""
|
171 |
+
|
172 |
+
# Check if we successfully loaded a model
|
173 |
if model is None or tokenizer is None:
|
174 |
+
# No model available, use fallback
|
175 |
+
return fallback_translate(text, source_lang)
|
176 |
+
|
177 |
# --- Enhanced Prompt Engineering ---
|
178 |
# Map source language codes to full language names for better model understanding
|
179 |
language_map = {
|
|
|
208 |
print(f"Translation Request - Source Lang: {source_lang} ({source_lang_name}), Target Lang: {target_lang}")
|
209 |
print(f"Using Enhanced Prompt for Balagha and Cultural Sensitivity")
|
210 |
|
211 |
+
# --- Model-specific translation logic ---
|
212 |
try:
|
213 |
+
if MODEL_TYPE in ["flan-t5", "t5-fallback"]:
|
214 |
+
# Use prompt-based approach for T5 models
|
215 |
+
# Tokenize the prompt
|
216 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
217 |
+
|
218 |
+
# Generate the translation with parameters tuned for quality
|
219 |
+
outputs = model.generate(
|
220 |
+
**inputs,
|
221 |
+
max_length=512, # Adjust based on expected output length
|
222 |
+
num_beams=5, # Increased for better quality
|
223 |
+
length_penalty=1.0, # Encourage slightly longer outputs for natural flow
|
224 |
+
top_k=50, # More diverse word choices
|
225 |
+
top_p=0.95, # Sample from higher probability tokens for fluency
|
226 |
+
early_stopping=True
|
227 |
+
)
|
228 |
+
|
229 |
+
# Decode the generated tokens
|
230 |
+
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
231 |
+
|
232 |
+
elif MODEL_TYPE == "marian":
|
233 |
+
# Direct translation for Marian model (specialized for translation)
|
234 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
235 |
+
|
236 |
+
outputs = model.generate(
|
237 |
+
**inputs,
|
238 |
+
max_length=512,
|
239 |
+
num_beams=5,
|
240 |
+
length_penalty=1.0,
|
241 |
+
early_stopping=True
|
242 |
+
)
|
243 |
+
|
244 |
+
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
245 |
+
else:
|
246 |
+
# Unknown model type, use fallback
|
247 |
+
return fallback_translate(text, source_lang)
|
248 |
|
249 |
print(f"Raw Translation Output: {translated_text}")
|
250 |
return translated_text
|
|
|
252 |
except Exception as e:
|
253 |
print(f"Error during model generation: {e}")
|
254 |
traceback.print_exc()
|
255 |
+
|
256 |
+
# If translation fails, use fallback
|
257 |
+
return fallback_translate(text, source_lang)
|
258 |
|
259 |
# --- Function to extract text ---
|
260 |
async def extract_text_from_file(file: UploadFile) -> str:
|