from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request from fastapi.responses import HTMLResponse, JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from typing import List, Optional from pydantic import BaseModel import os import requests import json import traceback import io import concurrent.futures import subprocess import sys import time # Define the TranslationRequest model class TranslationRequest(BaseModel): text: str source_lang: str target_lang: str # Import transformers for local model inference from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import torch # --- Configuration --- # Determine the base directory of the main.py script BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # Adjust paths to go one level up from backend to find templates/static TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates") STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static") # --- Initialize FastAPI --- app = FastAPI() app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") templates = Jinja2Templates(directory=TEMPLATE_DIR) # --- Language mapping --- LANGUAGE_MAP = { "en": "English", "fr": "French", "es": "Spanish", "de": "German", "zh": "Chinese", "ru": "Russian", "ja": "Japanese", "hi": "Hindi", "pt": "Portuguese", "tr": "Turkish", "ko": "Korean", "it": "Italian" } # --- Set cache directory to a writeable location --- # This is crucial for Hugging Face Spaces where /app/.cache is not writable # Using /tmp which is typically writable in most environments os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache' os.environ['HF_HOME'] = '/tmp/hf_home' os.environ['XDG_CACHE_HOME'] = '/tmp/cache' # --- Global model and tokenizer variables --- translator = None tokenizer = None model = None model_initialization_attempts = 0 max_model_initialization_attempts = 3 last_initialization_attempt = 0 initialization_cooldown = 300 # 5 minutes cooldown between retry attempts # --- Model initialization function --- def initialize_model(): """Initialize the translation model and tokenizer.""" global translator, tokenizer, model, model_initialization_attempts, last_initialization_attempt # Check if we've exceeded maximum attempts and if enough time has passed since last attempt current_time = time.time() if (model_initialization_attempts >= max_model_initialization_attempts and current_time - last_initialization_attempt < initialization_cooldown): print(f"Maximum initialization attempts reached. Waiting for cooldown period.") return False # Update attempt counter and timestamp model_initialization_attempts += 1 last_initialization_attempt = current_time try: print(f"Initializing model and tokenizer (attempt {model_initialization_attempts})...") # Use a smaller, faster model model_name = "Helsinki-NLP/opus-mt-en-ar" # Much smaller English-to-Arabic model # Check for available device - properly detect CPU/GPU device = "cpu" # Default to CPU which is more reliable if torch.cuda.is_available(): device = "cuda" print(f"CUDA is available: {torch.cuda.get_device_name(0)}") print(f"Device set to use: {device}") # Load the tokenizer with explicit cache directory print(f"Loading tokenizer from {model_name}...") try: tokenizer = AutoTokenizer.from_pretrained( model_name, cache_dir="/tmp/transformers_cache", use_fast=True, local_files_only=False ) if tokenizer is None: print("Failed to load tokenizer") return False print("Tokenizer loaded successfully") except Exception as e: print(f"Error loading tokenizer: {e}") return False # Load the model with explicit device placement print(f"Loading model from {model_name}...") try: model = AutoModelForSeq2SeqLM.from_pretrained( model_name, cache_dir="/tmp/transformers_cache", low_cpu_mem_usage=True, # Better memory usage torch_dtype=torch.float32 # Explicit dtype for better compatibility ) # Move model to device after loading model = model.to(device) print(f"Model loaded with PyTorch and moved to {device}") except Exception as e: print(f"Error loading model: {e}") print("Model initialization failed") return False # Create a pipeline with the loaded model and tokenizer print("Creating translation pipeline...") try: # Create the pipeline with explicit model and tokenizer translator = pipeline( "translation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1, # Proper device mapping framework="pt" # Explicitly use PyTorch ) if translator is None: print("Failed to create translator pipeline") return False # Test the model with a simple translation to verify it works test_result = translator("hello world", max_length=128) print(f"Model test result: {test_result}") if not test_result or not isinstance(test_result, list) or len(test_result) == 0: print("Model test failed: Invalid output format") return False # Success - reset the attempt counter model_initialization_attempts = 0 print(f"Model {model_name} successfully initialized and tested") return True except Exception as inner_e: print(f"Error creating translation pipeline: {inner_e}") traceback.print_exc() return False except Exception as e: print(f"Critical error initializing model: {e}") traceback.print_exc() return False # --- Translation Function --- def translate_text(text, source_lang, target_lang): """Translate text using local model or fallback to online services.""" global translator, tokenizer, model print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}") # Check if model is initialized, if not try to initialize it if not model or not tokenizer or not translator: success = initialize_model() if not success: print("Local model initialization failed, using fallback translation") return use_fallback_translation(text, source_lang, target_lang) try: # Only send the raw text to the Helsinki model text_to_translate = text # Use a more reliable timeout approach with concurrent.futures with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit( lambda: translator( text_to_translate, max_length=768 )[0]["translation_text"] ) try: # Set a reasonable timeout result = future.result(timeout=10) # Post-process the result for Arabic cultural adaptation if target_lang == "ar": result = culturally_adapt_arabic(result) return result except concurrent.futures.TimeoutError: print(f"Model inference timed out after 10 seconds, falling back to online translation") return use_fallback_translation(text, source_lang, target_lang) except Exception as e: print(f"Error during model inference: {e}") # If the model failed during inference, try to re-initialize it for next time # but use fallback for this request initialize_model() return use_fallback_translation(text, source_lang, target_lang) except Exception as e: print(f"Error using local model: {e}") traceback.print_exc() return use_fallback_translation(text, source_lang, target_lang) def culturally_adapt_arabic(text: str) -> str: """Apply post-processing rules to enhance Arabic translation with cultural sensitivity.""" # Replace Latin punctuation with Arabic ones text = text.replace('?', '؟').replace(';', '؛').replace(',', '،') # If the text starts with common translation artifacts like "Translation:" or the prompt instructions, remove them common_prefixes = [ "الترجمة:", "ترجمة:", "النص المترجم:", "Translation:", "Arabic translation:" ] for prefix in common_prefixes: if text.startswith(prefix): text = text[len(prefix):].strip() # Additional cultural adaptations can be added here return text # --- Function to check model status and trigger re-initialization if needed --- def check_and_reinitialize_model(): """Check if model needs to be reinitialized and do so if necessary""" global translator, model, tokenizer try: # If model isn't initialized yet, try to initialize it if not model or not tokenizer or not translator: print("Model not initialized. Attempting initialization...") return initialize_model() # Test the existing model with a simple translation test_text = "hello" result = translator(test_text, max_length=128) # If we got a valid result, model is working fine if result and isinstance(result, list) and len(result) > 0: print("Model check: Model is functioning correctly.") return True else: print("Model check: Model returned invalid result. Reinitializing...") return initialize_model() except Exception as e: print(f"Error checking model status: {e}") print("Model may be in a bad state. Attempting reinitialization...") return initialize_model() def use_fallback_translation(text, source_lang, target_lang): """Use various fallback online translation services.""" print("Using fallback translation...") # Try Google Translate API with a wrapper first (most reliable) try: print("Attempting fallback with Google Translate (no API key)") from googletrans import Translator google_translator = Translator(service_urls=['translate.google.com', 'translate.google.co.kr']) result = google_translator.translate(text, src=source_lang, dest=target_lang) if result and result.text: print("Google Translate successful!") return result.text except Exception as e: print(f"Error with Google Translate fallback: {str(e)}") # List of LibreTranslate servers to try with increased timeout libre_servers = [ "https://translate.terraprint.co/translate", "https://libretranslate.de/translate", "https://translate.argosopentech.com/translate", "https://translate.fedilab.app/translate", "https://trans.zillyhuhn.com/translate" # Additional server ] # Try each LibreTranslate server with increased timeout for server in libre_servers: try: print(f"Attempting fallback translation using LibreTranslate: {server}") headers = { "Content-Type": "application/json" } payload = { "q": text, "source": source_lang, "target": target_lang } # Use a longer timeout for the request (8 seconds instead of 5) response = requests.post(server, json=payload, headers=headers, timeout=8) if response.status_code == 200: result = response.json() if "translatedText" in result: print(f"LibreTranslate successful using {server}") return result["translatedText"] except Exception as e: print(f"Error with LibreTranslate {server}: {str(e)}") continue # Try MyMemory as another fallback try: print("Attempting fallback with MyMemory Translation API") url = "https://api.mymemory.translated.net/get" params = { "q": text, "langpair": f"{source_lang}|{target_lang}", } response = requests.get(url, params=params, timeout=10) if response.status_code == 200: data = response.json() if data and data.get("responseData") and data["responseData"].get("translatedText"): print("MyMemory translation successful!") return data["responseData"]["translatedText"] except Exception as e: print(f"Error with MyMemory fallback: {str(e)}") # Final fallback - return original text with error message print("All translation services failed. Returning error message.") return f"[Translation services unavailable] {text}" # --- Helper Functions --- async def extract_text_from_file(file: UploadFile) -> str: """Extracts text content from uploaded files without writing to disk.""" content = await file.read() file_extension = os.path.splitext(file.filename)[1].lower() extracted_text = "" try: if file_extension == '.txt': # Process text file directly from bytes try: extracted_text = content.decode('utf-8') except UnicodeDecodeError: # Try other common encodings if UTF-8 fails for encoding in ['latin-1', 'cp1252', 'utf-16']: try: extracted_text = content.decode(encoding) break except UnicodeDecodeError: continue elif file_extension == '.docx': try: import docx from io import BytesIO # Load DOCX from memory doc_stream = BytesIO(content) doc = docx.Document(doc_stream) extracted_text = '\n'.join([para.text for para in doc.paragraphs]) except ImportError: raise HTTPException(status_code=501, detail="DOCX processing requires 'python-docx' library") elif file_extension == '.pdf': try: import fitz # PyMuPDF from io import BytesIO # Load PDF from memory pdf_stream = BytesIO(content) doc = fitz.open(stream=pdf_stream, filetype="pdf") page_texts = [] for page in doc: page_texts.append(page.get_text()) extracted_text = "\n".join(page_texts) doc.close() except ImportError: raise HTTPException(status_code=501, detail="PDF processing requires 'PyMuPDF' library") else: raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}") print(f"Extracted text length: {len(extracted_text)}") return extracted_text except Exception as e: print(f"Error processing file {file.filename}: {e}") traceback.print_exc() raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}") # --- API Endpoints --- @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): """Serves the main HTML page.""" return templates.TemplateResponse("index.html", {"request": request}) @app.post("/translate/text") async def translate_text_endpoint(request: TranslationRequest): global translator, model, tokenizer print("[DEBUG] /translate/text endpoint called") try: # Explicitly extract fields from request to ensure they exist source_lang = request.source_lang target_lang = request.target_lang text = request.text print(f"[DEBUG] Received request: source_lang={source_lang}, target_lang={target_lang}, text={text[:50]}") # Call our culturally-aware translate_text function translation_result = translate_text(text, source_lang, target_lang) # Check for empty result if not translation_result or translation_result.strip() == "": print("[DEBUG] Empty translation result received") return JSONResponse( status_code=500, content={"success": False, "error": "Translation returned empty result"} ) print(f"[DEBUG] Translation successful: {translation_result[:100]}...") return {"success": True, "translated_text": translation_result} except Exception as e: print(f"Critical error in translate_text_endpoint: {str(e)}") traceback.print_exc() return JSONResponse( status_code=500, content={"success": False, "error": f"Translation failed: {str(e)}"} ) @app.post("/translate/document") async def translate_document_endpoint( file: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form("ar") ): """Translates text extracted from an uploaded document.""" try: # Extract text directly from the uploaded file extracted_text = await extract_text_from_file(file) if not extracted_text: raise HTTPException(status_code=400, detail="Could not extract any text from the document.") # Translate the extracted text translated_text = translate_text(extracted_text, source_lang, target_lang) return JSONResponse(content={ "original_filename": file.filename, "detected_source_lang": source_lang, "translated_text": translated_text }) except HTTPException as http_exc: raise http_exc except Exception as e: print(f"Document translation error: {e}") traceback.print_exc() raise HTTPException(status_code=500, detail=f"Document translation error: {str(e)}") # --- Run the server (for local development) --- if __name__ == "__main__": import uvicorn uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)