|
import streamlit as st |
|
from PIL import Image |
|
|
|
|
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") |
|
|
|
model = AutoModelForImageClassification.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") |
|
|
|
|
|
|
|
|
|
|
|
st.title("Hot Dog? Or Not?") |
|
|
|
file_name = st.file_uploader("Upload a hot dog candidate image") |
|
|
|
if file_name is not None: |
|
col1, col2 = st.columns(2) |
|
|
|
image = Image.open(file_name) |
|
col1.image(image, use_column_width=True) |
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
image_tensor = extractor(images=image, return_tensors="pt")["pixel_values"] |
|
predictions = model(image) |
|
|
|
col2.header("Probabilities") |
|
for p in predictions: |
|
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") |