Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -272,7 +272,33 @@ class ImageCaptioningModel(tf.keras.Model):
|
|
272 |
@property
|
273 |
def metrics(self):
|
274 |
return [self.loss_tracker, self.acc_tracker]
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
def load_image_from_path(img_path):
|
278 |
img = tf.io.read_file(img_path)
|
@@ -312,29 +338,4 @@ def generate_caption(img_path, add_noise=False):
|
|
312 |
y_inp = y_inp.replace('[start] ', '')
|
313 |
return y_inp
|
314 |
|
315 |
-
def get_caption_model():
|
316 |
-
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
|
317 |
-
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
|
318 |
-
|
319 |
-
cnn_model = CNN_Encoder()
|
320 |
-
|
321 |
-
caption_mode = ImageCaptioningModel(
|
322 |
-
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
|
323 |
-
)
|
324 |
-
|
325 |
-
def call_fn(batch, training):
|
326 |
-
return batch
|
327 |
-
|
328 |
-
caption_mode.call = call_fn
|
329 |
-
sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))
|
330 |
-
|
331 |
-
caption_mode((sample_x, sample_y))
|
332 |
-
|
333 |
-
sample_img_embed = caption_mode.cnn_model(sample_x)
|
334 |
-
sample_enc_out = caption_mode.encoder(sample_img_embed, training=False)
|
335 |
-
caption_mode.decoder(sample_y, sample_enc_out, training=False)
|
336 |
-
|
337 |
-
caption_mode.load_weights('model.h5')
|
338 |
-
|
339 |
-
return caption_mode
|
340 |
|
|
|
272 |
@property
|
273 |
def metrics(self):
|
274 |
return [self.loss_tracker, self.acc_tracker]
|
275 |
+
|
276 |
+
|
277 |
+
def get_caption_model():
|
278 |
+
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
|
279 |
+
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
|
280 |
+
|
281 |
+
cnn_model = CNN_Encoder()
|
282 |
+
|
283 |
+
caption_mode = ImageCaptioningModel(
|
284 |
+
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
|
285 |
+
)
|
286 |
+
|
287 |
+
def call_fn(batch, training):
|
288 |
+
return batch
|
289 |
+
|
290 |
+
caption_mode.call = call_fn
|
291 |
+
sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))
|
292 |
+
|
293 |
+
caption_mode((sample_x, sample_y))
|
294 |
+
|
295 |
+
sample_img_embed = caption_mode.cnn_model(sample_x)
|
296 |
+
sample_enc_out = caption_mode.encoder(sample_img_embed, training=False)
|
297 |
+
caption_mode.decoder(sample_y, sample_enc_out, training=False)
|
298 |
+
|
299 |
+
caption_mode.load_weights('model.h5')
|
300 |
+
|
301 |
+
return caption_mode
|
302 |
|
303 |
def load_image_from_path(img_path):
|
304 |
img = tf.io.read_file(img_path)
|
|
|
338 |
y_inp = y_inp.replace('[start] ', '')
|
339 |
return y_inp
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|