File size: 11,309 Bytes
925195b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
from langchain_community.document_loaders import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import chroma
from langchain_community.llms import openai
from langchain.chains import LLMChain
from dotenv import load_dotenv
from langchain.chains import ConversationalRetrievalChain
from langchain_core.prompts import ChatPromptTemplate,PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
import os
from dotenv import load_dotenv
import streamlit as st
import streamlit_chat
from langchain_groq import ChatGroq
global seed
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatOpenAI
from langchain.docstore.document import Document
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceEmbeddings
import pandas as pd
load_dotenv()
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
class prompts:
prompt = PromptTemplate.from_template("""
You are a helpful fitness assistant. Use the following context to answer the question The Level is provided for you to get a better idea on how to answer the question
.
If you don't know the answer, just say that you don't know, don't try to make up an answer.Also make sure to mention the level passed for the user.
Context:
{context}
Chat History:
{history}
Question:
{question}
Level:
{level}
Answer:
""")
# Data Filteration
def filter_transform_data(dataframe):
dataframe.drop("RatingDesc",axis=1,inplace=True)
dataframe.dropna(subset=["Desc","Equipment"],inplace=True)
dataframe.drop("Rating",inplace=True,axis=1)
# transform data
document_data = dataframe.to_dict(orient="records")
return document_data
def get_context(vector_store,query,level):
results = vector_store.max_marginal_relevance_search(
query=query,
k=5,
filter={"Level": level},
)
# Creating the LLM Chain
# Pass your context manually from retrieved documents
context = "\n\n".join([doc.page_content for doc in results])
return context
def generate_vector_store():
# embedding = OpenAIEmbeddings(
if "vector_store" not in st.session_state:
langchain_documents = []
dataframe = pd.read_csv("megaGymDataset.csv",index_col=0)
document_data = filter_transform_data(dataframe)
# Iterate through the sample data and create Document objects
for item in document_data:
# Formulate the page_content string
page_content = (
f"Title: {item['Title']}\n"
f"Type:{item['Type']}\n"
f"BodyPart: {item['BodyPart']}\n"
f"Desc: {item['Desc']}\n"
f"Equipment: {item['Equipment']}\n"
)
# Create the metadata dictionary
metadata = {"Level": item['Level']}
# Create the Document object
doc = Document(page_content=page_content, metadata=metadata)
# Add the Document to our list
langchain_documents.append(doc)
# creating the session_state for vector_store
# embedding = OpenAIEmbeddings(openai_api_key=os.environ["OPENAI_API_KEY"])
embedding = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large-instruct")
# if path not exist
if not os.path.exists("db"):
st.session_state.vector_store = Chroma.from_documents(langchain_documents,embedding=embedding,collection_name="gym-queries-data",persist_directory = "db")
# st.session_state.vector_store.persist()
else:
st.session_state.vector_store = Chroma(
persist_directory="db",
embedding_function=embedding
)
return st.session_state.vector_store
def get_conversational_chain(vector_store,query,level):
# model_name = "msu-rcc-lair/RuadaptQwen2.5-32B-Instruct" # Replace with actual name
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# device_map="auto",
# torch_dtype=torch.bfloat16, # or float16
# trust_remote_code=True
# )
# generator = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# max_new_tokens=512,
# temperature=0.7,
# return_full_text=False
# )
# llm = HuggingFacePipeline(pipeline=generator)
# llm = ChatOpenAI(temperature=0.5,model_name="gpt-4o")
# llama3-70b-8192
llm = ChatGroq(
temperature=1,
groq_api_key = os.environ["GROQ_API_KEY"],
model_name="llama-3.1-8b-instant",
max_tokens=560,
# top_p=0.95,
# frequency_penalty=1,
# presence_penalty=1,
)
# llm_chain = LLMChain(llm=llm, prompt=prompts.prompt)
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(memory_key="history", input_key="question", return_messages=True)
st.session_state.conversational_chain = LLMChain(
llm=llm,
# taking the prompt template
prompt=prompts.prompt,
memory=st.session_state.memory
)
return st.session_state.conversational_chain,st.session_state.memory
def stick_it_good():
# make header sticky.
st.markdown(
"""
<div class='fixed-header'/>
<style>
div[data-testid="stVerticalBlock"] div:has(div.fixed-header) {
position: sticky;
top: 2.875rem;
background-color: ##393939;
z-index: 999;
}
.fixed-header {
border-bottom: 1px solid black;
}
</style>
""",
unsafe_allow_html=True
)
def show_privacy_policy():
st.title("Privacy Policy")
def show_terms_of_service():
st.title("Terms of Service")
seed = 0
def main():
global seed
page = st.sidebar.selectbox("Choose a page", ["Home", "Privacy Policy", "Terms of Service"])
if page == "Privacy Policy":
show_privacy_policy()
elif page == "Terms of Service":
show_terms_of_service()
else:
st.write("Welcome to the Home Page")
with st.container():
st.title("Workout Wizard")
stick_it_good()
with st.sidebar:
if "seed" not in st.session_state:
st.session_state.seed = 0
# Display the image using the URL
choose_mode = st.selectbox('Choose Workout Level',["Beginner","Intermediate","Expert"])
st.markdown("<h2 style='text-align: center;'>Choose Your Avatar</h2>", unsafe_allow_html=True)
# st.markdown(f"<h2 style='text-align: center;'>{st.button("Back")}</h2>", unsafe_allow_html=True)
# Center the buttons using HTML and CSS
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
st.write("") # Empty column for spacing
with col2:
print(st.session_state.seed)
choose_Avatar = st.button("Next")
choose_Avatar_second = st.button("Back")
if choose_Avatar:
st.session_state.seed += 1
if choose_Avatar_second:
st.session_state.seed -= 1
avatar_url = f"https://api.dicebear.com/9.x/adventurer/svg?seed={st.session_state.seed}"
st.image(avatar_url, caption=f"Avatar {st.session_state.seed }")
with col3:
st.write("") # Empty column for spacing
streamlit_chat.message("Hi. I'm your friendly Gym Assistant Bot.")
streamlit_chat.message("Ask me anything about the gym! Just don’t ask me to do any push-ups... I'm already *up* and running!")
streamlit_chat.message("If you want to change your workout level and avatar, press the top left arrow and you will have options to make changes")
question = st.chat_input("Ask a question related to your GYM queries")
if "conversation_chain" not in st.session_state:
st.session_state.conversation_chain = None
# if question:
# Converstion chain
if st.session_state.conversation_chain == None:
# st.session_state.vectors
print("the vector store generated")
st.session_state.vector_store = generate_vector_store()
st.session_state.conversation_chain, st.session_state.memory = get_conversational_chain(st.session_state.vector_store,question,choose_mode)
# the session state memory
if st.session_state.memory != None:
for i,message in enumerate(st.session_state.memory.chat_memory.messages):
if i%2 == 0:
suffix = f" for {choose_mode} level"
# Check if the message ends with the suffix and strip it
if message.content.endswith(suffix):
message.content = message.content[:-len(suffix)]
# message.content = message.content.strip(f" for {choose_mode} level")
print("this is the message content",message.content)
streamlit_chat.message(message.content,is_user=True, avatar_style="adventurer",seed=st.session_state.seed, key=f"user_msg_{i}")
else:
streamlit_chat.message(message.content,key=f"bot_msg_{i}")
st.write("--------------------------------------------------")
if question:
streamlit_chat.message(question,is_user=True, avatar_style="adventurer",seed=st.session_state.seed)
print(question)
print("------------------------")
# GETTING THE CONTEXT AND ANSWER FROM THE MODEL
context = get_context(st.session_state.vector_store,question,choose_mode)
print("context::",context)
print("the choose mode:",choose_mode)
response = st.session_state.conversational_chain.run({"context": context, "question": question,"level":choose_mode})
streamlit_chat.message(response)
if __name__ == "__main__":
main()
|