Ammar971 commited on
Commit
39e970f
·
1 Parent(s): a28baa8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- import gradio as gr
2
-
3
- import tensorflow as tf
4
- import keras
5
- from matplotlib import pyplot as plt
6
- import numpy as np
7
-
8
- objects = tf.keras.datasets.mnist
9
- (training_images, training_labels), (test_images, test_labels) = objects.load_data()
10
-
11
- training_images = training_images / 255.0
12
- test_images = test_images / 255.0
13
-
14
- from keras.layers import Flatten, Dense
15
- model = tf.keras.models.Sequential([Flatten(input_shape=(28,28)),
16
- Dense(256, activation='relu'),
17
- Dense(256, activation='relu'),
18
- Dense(128, activation='relu'),
19
- Dense(10, activation=tf.nn.softmax)])
20
-
21
- model.compile(optimizer = 'adam',
22
- loss = 'sparse_categorical_crossentropy',
23
- metrics=['accuracy'])
24
-
25
- model.fit(training_images, training_labels, epochs=10)
26
-
27
- test=test_images[0].reshape(-1,28,28)
28
- pred=model.predict(test)
29
- print(pred)
30
-
31
- def predict_image(img):
32
- img_3d=img.reshape(-1,28,28)
33
- im_resize=img_3d/255.0
34
- prediction=model.predict(im_resize)
35
- pred=np.argmax(prediction)
36
- return pred
37
-
38
- iface = gr.Interface(
39
- fn= predict_image,
40
- inputs= gr.Image(height=28, width=28, image_mode='L', sources='upload'),
41
- outputs='label'
42
-
43
- )
44
-
45
- iface.launch(debug='True')