import os import logging import cv2 import numpy as np from pdf2image import convert_from_path from pytesseract import Output, pytesseract from scipy.ndimage import rotate from surya.ocr import run_ocr from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor import imutils import gradio as gr import subprocess import glob from PIL import Image, ImageDraw from pytesseract import Output import pytesseract # Function to correct image skew def correct_skew(image, delta=0.1, limit=3): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold( gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 41, 15 ) scores = [] angles = np.arange(-limit, limit + delta, delta) for angle in angles: _, score = determine_score(thresh, angle) scores.append(score) best_angle = angles[scores.index(max(scores))] (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, best_angle, 1.0) rotated = cv2.warpAffine( image, M, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255) ) print(f"[INFO] Detected skew angle: {best_angle} degrees") return rotated def determine_score(arr, angle): data = rotate(arr, angle, reshape=False, order=0) histogram = np.sum(data, axis=1, dtype=float) score = np.sum((histogram[1:] - histogram[:-1]) ** 2, dtype=float) return histogram, score def correct_image_rotation(image): if isinstance(image, Image.Image): original_size = image.size print('image original size is:', original_size) image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) image_required = image.copy() h, w = image_required.shape[:2] cropped_rotated = cv2.resize(image_required, (w * 4, h * 4)) results = pytesseract.image_to_osd( cropped_rotated, output_type=Output.DICT, config='--dpi 300 --psm 0 -c min_characters_to_try=5 -c tessedit_script_lang=Arabic' ) if results["script"] not in ['Bengali', 'Latin', 'Greek', 'Katakana'] and results["orientation"] != 180: print("[INFO] Detected orientation: {}".format(results["orientation"])) print("[INFO] Rotate by {} degrees to correct".format(results["rotate"])) print("[INFO] Detected script: {}".format(results["script"])) rotated = imutils.rotate_bound(image, angle=results['rotate']) if results['rotate'] in [90, 270]: rotated_h, rotated_w = rotated.shape[:2] original_size = (rotated_w, rotated_h) print(f"Rotated dimensions: {rotated_w}x{rotated_h}") if (rotated_w, rotated_h) != (h, w): rotated = cv2.resize(rotated, (w, h)) else: print("[INFO] Major orientation is correct, proceeding to fine-tune...") rotated = image final_rotated = correct_skew(rotated) rotated_pil = Image.fromarray(cv2.cvtColor(final_rotated, cv2.COLOR_BGR2RGB)) print('resize the image to its original size: ', original_size) corrected_image = rotated_pil.resize(original_size, Image.Resampling.LANCZOS) return corrected_image # Function to process PDF or image and detect text lines def process_pdf(file_path): # Define the results directories detected_text_dir = "/home/Detected_Text_Line" detected_layout_dir = "/home/Detected_layout" ocr_dir = "/home/OCR" # Ensure the results directories exist os.makedirs(detected_text_dir, exist_ok=True) os.makedirs(detected_layout_dir, exist_ok=True) os.makedirs(ocr_dir, exist_ok=True) # Extract the PDF name (without extension) pdf_name = os.path.splitext(os.path.basename(file_path))[0] # Step 1: Run surya_detect try: subprocess.run( ["surya_detect", "--results_dir", detected_text_dir, "--images", file_path], check=True, ) print(f"[INFO] surya_detect completed for {file_path}") except subprocess.CalledProcessError as e: print(f"[ERROR] surya_detect failed: {e}") return None # Step 2: Remove column files (if they exist) column_files = glob.glob(f"{detected_text_dir}/{pdf_name}/*column*") if column_files: try: subprocess.run(["rm"] + column_files, check=True) print(f"[INFO] Removed column files for {pdf_name}") except subprocess.CalledProcessError as e: print(f"[ERROR] Failed to remove column files: {e}") else: print(f"[INFO] No column files found for {pdf_name}") # Return the path to the directory containing the output images output_dir = os.path.join(detected_text_dir, pdf_name) return output_dir # Function to handle the Gradio interface def gradio_interface(file): # Step 1: Correct the skew of the input file corrected_images = [] if file.name.lower().endswith('.pdf'): images = convert_from_path(file.name) for i, image in enumerate(images): corrected_image = correct_image_rotation(image) corrected_images.append(corrected_image) else: image = Image.open(file.name) corrected_image = correct_image_rotation(image) corrected_images.append(corrected_image) # Save corrected images to a folder corrected_dir = "/home/Corrected_Images" os.makedirs(corrected_dir, exist_ok=True) for i, corrected_image in enumerate(corrected_images): corrected_image.save(os.path.join(corrected_dir, f"corrected_{i}.png")) # Step 2: Detect text lines in the corrected images detected_dir = process_pdf(corrected_dir) if detected_dir is None: # Return a placeholder image with an error message error_image = Image.new("RGB", (400, 200), color="red") error_draw = ImageDraw.Draw(error_image) error_draw.text((10, 10), "Error detecting text lines. Check the logs for details.", fill="white") return corrected_images, [error_image] # Load and return the detected text line images detected_images = [] for image_file in sorted(os.listdir(detected_dir)): if image_file.endswith((".png", ".jpg", ".jpeg")): image_path = os.path.join(detected_dir, image_file) detected_images.append(Image.open(image_path)) if not detected_images: # Return a placeholder image if no output images are found placeholder_image = Image.new("RGB", (400, 200), color="gray") placeholder_draw = ImageDraw.Draw(placeholder_image) placeholder_draw.text((10, 10), "No detected text line images found.", fill="white") return corrected_images, [placeholder_image] return corrected_images, detected_images # Gradio Interface iface = gr.Interface( fn=gradio_interface, inputs=gr.File(label="Upload PDF or Image"), outputs=[ gr.Gallery(label="Corrected Images", columns=[2], height="auto"), gr.Gallery(label="Detected Text Lines", columns=[2], height="auto"), ], title="PDF/Image Skew Correction and Text Line Detection", description="Upload a PDF or image to correct skew and detect text lines.", ) iface.launch()