File size: 12,430 Bytes
d4cec72 c1a54a6 d4cec72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
##############################
#### All library imports #####
##############################
import streamlit as st # web app
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from bs4 import BeautifulSoup
import re
from nltk.corpus import stopwords # Import the stop word list
from wordcloud import WordCloud
# stopwords.words("english")
from nltk import word_tokenize
from nltk.util import ngrams
import PyPDF2
import base64 # byte object into a pdf file
############# Web app streamlit page config ##########
st.set_page_config(
page_title = 'Resume enhancement by extracting keywords using NLP ',
page_icon = 'π',
layout = 'wide'
)
st.title(" π Resume enhancement by extracting keywords π ")
st.subheader("π’ using NLP π’")
"""β
** Downloading Models and Basic Setup **"""
##############
#### download NLTK models ##############
##############
nltk.download("popular")
nltk.download('stopwords')
lemmatizer = WordNetLemmatizer()
#########################################
###### read main resources files ########
#########################################
df=pd.read_csv('Resume_skills.csv')
df=df.drop(columns=['Unnamed: 0'])
file1=open('linkedin_skill','r')
skills=[(line.strip()).split(',')[0].lower() for line in file1.readlines()]
def sentence_maker(unique_words):
sentences=''
for i in unique_words:
sentences+=''.join(i.strip())+' '
return sentences
#stop_words = set(nltk.corpus.stopwords.words('english'))
def extract_skills(input_text):
res=[]
for i in input_text:
# generate bigrams and trigrams (such as artificial intelligence)
bigrams_trigrams = list(map(' '.join, nltk.everygrams(i, 2, 3)))
# we create a set to keep the results in.
found_skills = set()
# we search for each token in our skills database
for token in i:
if token.lower() in skills:
found_skills.add(token)
# print('2',found_skills)
# we search for each bigram and trigram in our skills database
for ngram in bigrams_trigrams:
if ngram.lower() in skills:
found_skills.add(ngram)
res.append(found_skills)
print(res)
return res
def clean_sentences(df,col_name):
reviews = []
for sent in (df[col_name]):
#remove html content
review_text = BeautifulSoup(sent).get_text()
#remove non-alphabetic characters
review_text = re.sub("[^a-zA-Z]"," ", review_text)
#tokenize the sentences
words = word_tokenize(review_text.lower())
stops = set(stopwords.words("english"))
# 5. Remove stop words
meaningful_words = [w for w in words if not w in stops]
reviews.append(meaningful_words)
return(reviews)
def clean_sentences2(df,col_name):
reviews = []
for sent in (df[col_name]):
#remove html content
review_text = BeautifulSoup(sent).get_text()
#remove non-alphabetic characters
review_text = re.sub("[^a-zA-Z]"," ", review_text)
#tokenize the sentences
words = word_tokenize(review_text.lower())
reviews.append(words)
return(reviews)
def extract_keywords(res):
keywords=set()
for i in res:
for j in i:
keywords.add(j)
return(keywords)
def clean_sentences3(text):
reviews = []
#remove html content
review_text = BeautifulSoup(text).get_text()
#remove non-alphabetic characters
review_text = re.sub("[^a-zA-Z]"," ", review_text)
#tokenize the sentences
words = word_tokenize(review_text.lower())
stops = set(stopwords.words("english"))
#
# 5. Remove stop words
meaningful_words = [w for w in words if not w in stops]
reviews.append(meaningful_words)
return(reviews)
def decode_txt1(file_name): # for clean text
f= open(file_name,"r")
full_text = f.read()
clean_text=clean_sentences3(full_text)
f.close()
return clean_text
# return data
def decode_pdf(filename):
# creating a pdf file object
pdfFileObj = open(filename, 'rb')
# creating a pdf reader object
pdfReader1 = PyPDF2.PdfFileReader(pdfFileObj)
# printing number of pages in pdf file
num_pages=pdfReader1.numPages
# print(num)
text=open('Sample.txt','w')
for i in range(num_pages):
# creating a page object
pageObj = pdfReader1.getPage(i)
# extracting text from page
t=(pageObj.extractText())
text.write(t)
# closing the pdf file object
pdfFileObj.close()
text.close()
# print(text)
dec_txt=decode_txt1('Sample.txt')
#print(dec_txt)
return dec_txt
# resume_text
def extract_skills2(input_text):
found_skills=[]
# input_text=list(input_text)
for i in input_text:
# print('1',i)
# generate bigrams and trigrams (such as artificial intelligence)
bigrams_trigrams = list(map(' '.join, nltk.everygrams(i, 2, 3)))
# we create a set to keep the results in.
# found_skills = []
# we search for each token in our skills database
# for token in i:
token=i
if token.lower() in skills:
# print(found_skills)
found_skills.append(token)
# print('2',found_skills)
# we search for each bigram and trigram in our skills database
for ngram in bigrams_trigrams:
if ngram.lower() in skills:
found_skills.append(ngram)
# res.append(found_skills)
# print(found_skills)
return found_skills
#########################################
############# Upload your resume ############
#########################################
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
if uploaded_file is not None:
with open("input.pdf", "wb") as f:
base64_pdf = base64.b64encode(uploaded_file.read()).decode('utf-8')
f.write(base64.b64decode(base64_pdf))
f.close()
resume_text=decode_pdf("input.pdf") # enter the resume name
###################
####### select the category ############
####################
list_of_cats = [ 'Testing', 'HR', 'DESIGNER', 'INFORMATION-TECHNOLOGY', 'TEACHER', 'ADVOCATE','BUSINESS-DEVELOPMENT', 'HEALTHCARE', 'FITNESS', 'AGRICULTURE','BPO', 'SALES', 'CONSULTANT', 'DIGITAL-MEDIA', 'AUTOMOBILE','CHEF', 'FINANCE', 'APPAREL', 'ENGINEERING', 'ACCOUNTANT','CONSTRUCTION', 'PUBLIC-RELATIONS', 'BANKING', 'ARTS', 'AVIATION','Data Science', 'Advocate', 'Arts', 'Web Designing','Mechanical Engineer', 'Sales', 'Health and fitness','Civil Engineer', 'Java Developer', 'Business Analyst','SAP Developer', 'Automation Testing', 'Electrical Engineering','Operations Manager', 'Python Developer', 'DevOps Engineer','Network Security Engineer', 'PMO', 'Database', 'Hadoop','ETL Developer', 'DotNet Developer', 'Blockchain']
cat = st.selectbox("Select your desired Category",list_of_cats, index = 0)
#cat = "Testing" #@param ['HR', 'DESIGNER', 'INFORMATION-TECHNOLOGY', 'TEACHER', 'ADVOCATE','BUSINESS-DEVELOPMENT', 'HEALTHCARE', 'FITNESS', 'AGRICULTURE','BPO', 'SALES', 'CONSULTANT', 'DIGITAL-MEDIA', 'AUTOMOBILE','CHEF', 'FINANCE', 'APPAREL', 'ENGINEERING', 'ACCOUNTANT','CONSTRUCTION', 'PUBLIC-RELATIONS', 'BANKING', 'ARTS', 'AVIATION','Data Science', 'Advocate', 'Arts', 'Web Designing','Mechanical Engineer', 'Sales', 'Health and fitness','Civil Engineer', 'Java Developer', 'Business Analyst','SAP Developer', 'Automation Testing', 'Electrical Engineering','Operations Manager', 'Python Developer', 'DevOps Engineer','Network Security Engineer', 'PMO', 'Database', 'Hadoop','ETL Developer', 'DotNet Developer', 'Blockchain', 'Testing'] {allow-input: true}
print('You selected:', cat)
# cat='Data Science' # enter the category to extract
sub_df=df[df['Category']==cat]
sentences1=sentence_maker(sub_df['Resume_skills'])
"""β
**Extracting Data from PDF **"""
resume_text2=extract_skills2(resume_text[0])
resume_keywords=set(resume_text2)
# resume_keywords # keywords for existing resume
print(resume_keywords)
wc = WordCloud(width = 500, height = 500,include_numbers=True,collocations=True, background_color ='white',min_font_size = 10).generate(sentence_maker(resume_keywords))
plt.figure(figsize=(10,10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.title(' existing Keywords')
plt.show()
# """**sub_unique_words** contains list of category related keywords and existing resume keywords in **resume_keywords**"""
"""β
Generating ***Similarity Score*** with existing skillset"""
from cdifflib import CSequenceMatcher
def get_similarity_score(s1,s2):
sm= CSequenceMatcher(None,s1,s2)
return(str(round(sm.ratio()*100,3))+'%')
#return round(sm.ratio()*100,3)
wc_r = WordCloud(width = 500, height = 500,max_words=200,include_numbers=True,collocations=True,
background_color ='white',min_font_size = 10).generate(sentences1)
# plt.figure(figsize=(10,10))
# plt.imshow(wc_r, interpolation='bilinear')
# plt.axis("off")
# plt.title('Keywords for : '+cat)
"""β
**Getting the matching score with database**"""
sub_unique_words=list(wc_r.words_.keys())
resume_keywords=list(resume_keywords)
bigram = list(map(' '.join,ngrams(sub_unique_words, 1)))
# print(bigram)
sub_keywords=set()
for bg in bigram:
if bg in skills:
# print(bg)
sub_keywords.add(bg)
tokens = nltk.word_tokenize(sentence_maker(sub_unique_words))
for i in tokens:
sub_keywords.add(i)
def preprocess(words):
res=set()
for i in words:
#remove html content
review_text = BeautifulSoup(i).get_text()
#remove non-alphabetic characters
review_text = re.sub("[^a-zA-Z]"," ", review_text)
#tokenize the sentences
words = word_tokenize(review_text.lower())
# print(words)
for j in words:
res.add(j)
# print(res)
return res
with st.spinner():
sub_unique_words_match=list(preprocess(sub_unique_words))
resume_keywords=list(preprocess(resume_keywords))
predicted_keywords_match=[i for i in sub_unique_words_match if i not in resume_keywords]
pred_keywords=[i for i in sub_keywords if i not in resume_keywords]
print(pred_keywords)
############################
#### final word cloud ######
############################
from collections import Counter
word_could_dict=Counter(pred_keywords)
wc = WordCloud(width = 500, height = 500,include_numbers=True,collocations=True,
background_color ='white',min_font_size = 10).generate_from_frequencies(word_could_dict)
plt.figure(figsize=(10,10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.title(' predicted keywords')
#plt.show()
wc.to_file('prediction.jpg') # enter file name to save
st.markdown("# Output")
col1, col2, col3, col4 = st.columns(4)
with col2:
st.markdown("### Predicted Keywords WordCloud")
st.image('prediction.jpg')
############################
#### similarty score ######
############################
existing_score = get_similarity_score(sub_unique_words_match,resume_keywords) # get the matching score for resume keywords and category keywords
predicted_result_score = get_similarity_score(predicted_keywords_match,sub_unique_words_match)# matching score for predicted keywords and category keywords
with col1:
st.markdown('### Existing Keywords :' )
st.metric( label = 'Score', value = existing_score)
with col3:
st.markdown(" ")
with col4:
st.markdown('### Predicted Keywords :' )
st.metric( label = 'Score', value = predicted_result_score) |