Spaces:
Runtime error
Runtime error
| from ultralytics import YOLO | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import torch | |
| model = YOLO('checkpoints/FastSAM.pt') # load a custom model | |
| def format_results(result,filter = 0): | |
| annotations = [] | |
| n = len(result.masks.data) | |
| for i in range(n): | |
| annotation = {} | |
| mask = result.masks.data[i] == 1.0 | |
| if torch.sum(mask) < filter: | |
| continue | |
| annotation['id'] = i | |
| annotation['segmentation'] = mask.cpu().numpy() | |
| annotation['bbox'] = result.boxes.data[i] | |
| annotation['score'] = result.boxes.conf[i] | |
| annotation['area'] = annotation['segmentation'].sum() | |
| annotations.append(annotation) | |
| return annotations | |
| def show_mask(annotation, ax, random_color=True, bbox=None, points=None): | |
| if random_color : # random mask color | |
| color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
| else: | |
| color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | |
| if type(annotation) == dict: | |
| annotation = annotation['segmentation'] | |
| mask = annotation | |
| h, w = mask.shape[-2:] | |
| mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| # draw box | |
| if bbox is not None: | |
| x1, y1, x2, y2 = bbox | |
| ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
| # draw point | |
| if points is not None: | |
| ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') | |
| ax.imshow(mask_image) | |
| return mask_image | |
| def post_process(annotations, image, mask_random_color=True, bbox=None, points=None): | |
| fig = plt.figure(figsize=(10, 10)) | |
| plt.imshow(image) | |
| for i, mask in enumerate(annotations): | |
| show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) | |
| plt.axis('off') | |
| # # create a BytesIO object | |
| # buf = io.BytesIO() | |
| # # save plot to buf | |
| # plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0) | |
| # # use PIL to open the image | |
| # img = Image.open(buf) | |
| # # copy the image data | |
| # img_copy = img.copy() | |
| plt.tight_layout() | |
| # # don't forget to close the buffer | |
| # buf.close() | |
| return fig | |
| # def show_mask(annotation, ax, random_color=False): | |
| # if random_color : # 掩膜颜色是否随机决定 | |
| # color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
| # else: | |
| # color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | |
| # mask = annotation.cpu().numpy() | |
| # h, w = mask.shape[-2:] | |
| # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| # ax.imshow(mask_image) | |
| # def post_process(annotations, image): | |
| # plt.figure(figsize=(10, 10)) | |
| # plt.imshow(image) | |
| # for i, mask in enumerate(annotations): | |
| # show_mask(mask.data, plt.gca(),random_color=True) | |
| # plt.axis('off') | |
| # 获取渲染后的像素数据并转换为PIL图像 | |
| return pil_image | |
| # post_process(results[0].masks, Image.open("../data/cake.png")) | |
| def predict(inp): | |
| results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
| results = format_results(results[0], 100) | |
| pil_image = post_process(annotations=results, image=inp) | |
| return pil_image | |
| # inp = 'assets/sa_192.jpg' | |
| # results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
| # results = format_results(results[0], 100) | |
| # post_process(annotations=results, image_path=inp) | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.inputs.Image(type='pil'), | |
| outputs=['plot'], | |
| examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
| ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
| ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
| ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
| ) | |
| demo.launch() |