Spaces:
Sleeping
Sleeping
Create eval.py
Browse files
eval.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# Read source sentences and translations from an Excel file
|
5 |
+
excel_file = "demo.xlsx" # Path to your Excel file
|
6 |
+
df = pd.read_excel(excel_file)
|
7 |
+
|
8 |
+
# Assuming the Excel file has columns: "Source", "Translation_1", "Translation_2", ..., "Translation_5"
|
9 |
+
source_col = "Source Sentence"
|
10 |
+
translation_cols = [f"Translation_{i}" for i in range(1, 6)]
|
11 |
+
|
12 |
+
# Store the result scores after evaluation
|
13 |
+
#result_columns = ['Source', 'Translation', 'Accuracy', 'Fluency', 'Overall']
|
14 |
+
result_columns = ['Source', 'Translation', 'Rating']
|
15 |
+
|
16 |
+
# Function to simulate the rating collection and return scores
|
17 |
+
def evaluate_translations(*ratings):
|
18 |
+
# Initialize lists to store results for all translations
|
19 |
+
sources = []
|
20 |
+
translations = []
|
21 |
+
#accuracy_ratings = []
|
22 |
+
#fluency_ratings = []
|
23 |
+
overall_ratings = []
|
24 |
+
name = ratings[0]
|
25 |
+
for item in ratings:
|
26 |
+
if type(item)==int:
|
27 |
+
overall_ratings.append(item)
|
28 |
+
|
29 |
+
for idx, row in df.iterrows():
|
30 |
+
source = row[source_col]
|
31 |
+
translations_list = [row[translation_col] for translation_col in translation_cols]
|
32 |
+
|
33 |
+
# Collect ratings for each translation
|
34 |
+
for i, translation in enumerate(translations_list):
|
35 |
+
|
36 |
+
sources.append(source)
|
37 |
+
translations.append(translation)
|
38 |
+
|
39 |
+
# Store the results in a DataFrame
|
40 |
+
results_df = pd.DataFrame({
|
41 |
+
'Source': sources,
|
42 |
+
'Translation': translations,
|
43 |
+
#'Accuracy': accuracy_ratings,
|
44 |
+
#'Fluency': fluency_ratings,
|
45 |
+
'Overall': overall_ratings
|
46 |
+
})
|
47 |
+
|
48 |
+
# Save the result to an Excel file
|
49 |
+
filename = name+"_evaluation_results.xlsx"
|
50 |
+
results_df.to_excel(filename, index=False)
|
51 |
+
return "Evaluation complete. Results have been saved to" + filename + "."
|
52 |
+
|
53 |
+
# Function to create the input sliders dynamically for each translation
|
54 |
+
def get_inputs():
|
55 |
+
inputs = []
|
56 |
+
inputs.append(gr.Textbox(label="User Name :", interactive=True))
|
57 |
+
for idx, row in df.iterrows():
|
58 |
+
source = row[source_col]
|
59 |
+
translations_list = [row[translation_col] for translation_col in translation_cols]
|
60 |
+
|
61 |
+
# Source sentence display (non-editable)
|
62 |
+
|
63 |
+
inputs.append(gr.Textbox(value=source, label=f"Source Sentence {idx+1}", interactive=False))
|
64 |
+
|
65 |
+
# Add 3 sliders for each translation (accuracy, fluency, overall)
|
66 |
+
for i, translation in enumerate(translations_list):
|
67 |
+
with gr.Row():
|
68 |
+
inputs.append(gr.Textbox(value=translation, label=f"Translation {i+1}"))
|
69 |
+
#inputs.append(gr.Slider(minimum=1, maximum=5, step=1, label=f"Accuracy (Translation {i+1})"))
|
70 |
+
#inputs.append(gr.Slider(minimum=1, maximum=5, step=1, label=f"Fluency (Translation {i+1})"))
|
71 |
+
inputs.append(gr.Slider(minimum=1, maximum=5, step=1, label=f"Rating (Translation {i+1})"))
|
72 |
+
|
73 |
+
return inputs
|
74 |
+
|
75 |
+
# Define the Gradio interface outputs
|
76 |
+
def get_outputs():
|
77 |
+
return gr.Textbox(label="Evaluation Status")
|
78 |
+
|
79 |
+
# Create the Gradio interface
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
# Inputs
|
82 |
+
inputs = get_inputs()
|
83 |
+
|
84 |
+
# Outputs
|
85 |
+
output = get_outputs()
|
86 |
+
|
87 |
+
# Add a Submit Button
|
88 |
+
submit_button = gr.Button("Submit Evaluation")
|
89 |
+
|
90 |
+
# Bind the button to the evaluation function
|
91 |
+
submit_button.click(evaluate_translations, inputs=inputs, outputs=output)
|
92 |
+
|
93 |
+
# Launch the interface
|
94 |
+
demo.launch()
|