Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# 1. Emotion Detection Model (Using Hugging Face's transformer)
|
7 |
+
# Choose a suitable model - 'emotion-classification' is the task, you can specify a model from Hugging Face Model Hub.
|
8 |
+
emotion_classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions") # Or choose another model
|
9 |
+
|
10 |
+
# 2. Conversational Agent Logic
|
11 |
+
def get_ai_response(user_input, emotion_predictions):
|
12 |
+
"""Generates AI response based on user input and detected emotions."""
|
13 |
+
|
14 |
+
# Basic response generation based on detected emotions
|
15 |
+
responses = {
|
16 |
+
"anger": "I understand you're feeling angry. Let's take a deep breath and try to resolve this.",
|
17 |
+
"sadness": "I'm sorry to hear you're feeling sad. Is there anything I can do to help?",
|
18 |
+
"joy": "That's wonderful! I'm so happy for you!",
|
19 |
+
"surprise": "Wow, that's surprising! Tell me more.",
|
20 |
+
"fear": "I understand you're afraid. How can I help?",
|
21 |
+
"neutral": "Understood.", # or a more neutral response
|
22 |
+
"default": "I am not able to understand the emotion, please try again"
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
dominant_emotion = None
|
27 |
+
max_score = 0
|
28 |
+
|
29 |
+
for prediction in emotion_predictions:
|
30 |
+
if prediction['score'] > max_score:
|
31 |
+
max_score = prediction['score']
|
32 |
+
dominant_emotion = prediction['label']
|
33 |
+
|
34 |
+
|
35 |
+
# Handle cases where no specific emotion is clear
|
36 |
+
if dominant_emotion is None:
|
37 |
+
return responses["default"] # or use default message if no emotion is detected.
|
38 |
+
elif dominant_emotion in responses:
|
39 |
+
return responses[dominant_emotion]
|
40 |
+
else:
|
41 |
+
return "I'm detecting some emotion, but I'm not sure how to respond." #Handle unexpected emotion labels.
|
42 |
+
|
43 |
+
# 3. Streamlit Frontend
|
44 |
+
st.title("Emotionally Aware Chatbot")
|
45 |
+
|
46 |
+
# Input Text Box
|
47 |
+
user_input = st.text_input("Enter your message:", "")
|
48 |
+
|
49 |
+
if user_input:
|
50 |
+
# Emotion Detection
|
51 |
+
emotion_predictions = emotion_classifier(user_input)
|
52 |
+
|
53 |
+
# Display Emotions
|
54 |
+
st.subheader("Detected Emotions:")
|
55 |
+
for prediction in emotion_predictions:
|
56 |
+
st.write(f"- {prediction['label']}: {prediction['score']:.2f}") # Show emotion score.
|
57 |
+
|
58 |
+
# Get AI Response
|
59 |
+
ai_response = get_ai_response(user_input, emotion_predictions)
|
60 |
+
|
61 |
+
# Display AI Response
|
62 |
+
st.subheader("AI Response:")
|
63 |
+
st.write(ai_response)
|