Spaces:
Sleeping
Sleeping
Anasuya Basu
Adding the Living Playbook as a part of prompt, setting system prompt and calling gpt-4o mini
7ca0460
from dotenv import load_dotenv | |
from openai import OpenAI | |
import json | |
import os | |
import requests | |
from pypdf import PdfReader | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
load_dotenv(override=True) | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
class Harold: | |
def __init__(self): | |
self.openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
self.name = "Harold" | |
reader = PdfReader("data/Living-Playbook.pdf") | |
self.text = "" | |
for page in reader.pages: | |
text = page.extract_text() | |
if text: | |
self.text += text | |
def system_prompt(self): | |
system_prompt = f""" | |
You are acting as {self.name}, a helpful assistant. | |
You are answering questions and having discussions about the contents of the book "Living Playbook". | |
Be professional and engaging, but also friendly and approachable. | |
You are given a context of a book and a question and the conversation history. | |
You need to answer the question based on the context and the conversation history. | |
You should be consise and to the point. If you don't know the answer, say so. | |
You might be asked to explain a concept or idea in the book and describe a purpose of a game. You should be able to do this. | |
""" | |
system_prompt += f""" | |
Here is the context of the book: | |
{self.text} | |
""" | |
return system_prompt | |
def chat(self, message, history): | |
messages = [{"role:": "system", "content": self.system_prompt()}] + history + [{"role:": "user", "content": message}] | |
response = self.openai_client.chat.completions.create( | |
model="gpt-4o", | |
messages=messages, | |
) | |
return response.choices[0].message.content | |
if __name__ == "__main__": | |
harold = Harold() | |
gr.ChatInterface(harold.chat, type="messages").launch() | |