File size: 18,904 Bytes
db3da1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# Copyright (c) Meta Platforms, Inc. and affiliates
import os
import math

import numpy as np
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import detectron2.utils.comm as comm

from detectron2.layers import ShapeSpec
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.modeling.backbone.fpn import FPN

BatchNorm = nn.BatchNorm2d

"""
Adapted models from repositories
    Deep Layer Aggregation CVPR 2018
    https://github.com/ucbdrive/dla
    BSD-3 Licence https://github.com/ucbdrive/dla/blob/master/LICENSE
    
    Geometry Uncertainty Projection Network for Monocular 3D Object Detection, ICCV 2021
    https://github.com/SuperMHP/GUPNet/blob/main/code/lib/backbones/dla.py
    MIT Licence https://github.com/SuperMHP/GUPNet/blob/main/LICENSE
"""

def get_model_url(data='imagenet', name='dla34', hash='ba72cf86'):
    return os.path.join('http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash))


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    def __init__(self, inplanes, planes, stride=1, dilation=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3,
                               stride=stride, padding=dilation,
                               bias=False, dilation=dilation)
        self.bn1 = BatchNorm(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=dilation,
                               bias=False, dilation=dilation)
        self.bn2 = BatchNorm(planes)
        self.stride = stride

    def forward(self, x, residual=None):
        if residual is None:
            residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 2

    def __init__(self, inplanes, planes, stride=1, dilation=1):
        super(Bottleneck, self).__init__()
        expansion = Bottleneck.expansion
        bottle_planes = planes // expansion
        self.conv1 = nn.Conv2d(inplanes, bottle_planes,
                               kernel_size=1, bias=False)
        self.bn1 = BatchNorm(bottle_planes)
        self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
                               stride=stride, padding=dilation,
                               bias=False, dilation=dilation)
        self.bn2 = BatchNorm(bottle_planes)
        self.conv3 = nn.Conv2d(bottle_planes, planes,
                               kernel_size=1, bias=False)
        self.bn3 = BatchNorm(planes)
        self.relu = nn.ReLU(inplace=True)
        self.stride = stride

    def forward(self, x, residual=None):
        if residual is None:
            residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += residual
        out = self.relu(out)

        return out


class BottleneckX(nn.Module):
    expansion = 2
    cardinality = 32

    def __init__(self, inplanes, planes, stride=1, dilation=1):
        super(BottleneckX, self).__init__()
        cardinality = BottleneckX.cardinality
        # dim = int(math.floor(planes * (BottleneckV5.expansion / 64.0)))
        # bottle_planes = dim * cardinality
        bottle_planes = planes * cardinality // 32
        self.conv1 = nn.Conv2d(inplanes, bottle_planes,
                               kernel_size=1, bias=False)
        self.bn1 = BatchNorm(bottle_planes)
        self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3,
                               stride=stride, padding=dilation, bias=False,
                               dilation=dilation, groups=cardinality)
        self.bn2 = BatchNorm(bottle_planes)
        self.conv3 = nn.Conv2d(bottle_planes, planes,
                               kernel_size=1, bias=False)
        self.bn3 = BatchNorm(planes)
        self.relu = nn.ReLU(inplace=True)
        self.stride = stride

    def forward(self, x, residual=None):
        if residual is None:
            residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += residual
        out = self.relu(out)

        return out


class Root(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, residual):
        super(Root, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, 1,
            stride=1, bias=False, padding=(kernel_size - 1) // 2)
        self.bn = BatchNorm(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.residual = residual

    def forward(self, *x):
        children = x
        x = self.conv(torch.cat(x, 1))
        x = self.bn(x)
        if self.residual:
            x += children[0]
        x = self.relu(x)

        return x


class Tree(nn.Module):
    def __init__(self, levels, block, in_channels, out_channels, stride=1,
                 level_root=False, root_dim=0, root_kernel_size=1,
                 dilation=1, root_residual=False):
        super(Tree, self).__init__()
        if root_dim == 0:
            root_dim = 2 * out_channels
        if level_root:
            root_dim += in_channels
        if levels == 1:
            self.tree1 = block(in_channels, out_channels, stride,
                               dilation=dilation)
            self.tree2 = block(out_channels, out_channels, 1,
                               dilation=dilation)
        else:
            self.tree1 = Tree(levels - 1, block, in_channels, out_channels,
                              stride, root_dim=0,
                              root_kernel_size=root_kernel_size,
                              dilation=dilation, root_residual=root_residual)
            self.tree2 = Tree(levels - 1, block, out_channels, out_channels,
                              root_dim=root_dim + out_channels,
                              root_kernel_size=root_kernel_size,
                              dilation=dilation, root_residual=root_residual)
        if levels == 1:
            self.root = Root(root_dim, out_channels, root_kernel_size,
                             root_residual)
        self.level_root = level_root
        self.root_dim = root_dim
        self.downsample = None
        self.project = None
        self.levels = levels
        if stride > 1:
            self.downsample = nn.MaxPool2d(stride, stride=stride)
        if in_channels != out_channels:
            self.project = nn.Sequential(
                nn.Conv2d(in_channels, out_channels,
                          kernel_size=1, stride=1, bias=False),
                BatchNorm(out_channels)
            )

    def forward(self, x, residual=None, children=None):
        children = [] if children is None else children
        bottom = self.downsample(x) if self.downsample else x
        residual = self.project(bottom) if self.project else bottom
        if self.level_root:
            children.append(bottom)
        x1 = self.tree1(x, residual)
        if self.levels == 1:
            x2 = self.tree2(x1)
            x = self.root(x2, x1, *children)
        else:
            children.append(x1)
            x = self.tree2(x1, children=children)
        return x


class DLA(nn.Module):
    def __init__(self, levels, channels, num_classes=1000,
                 block=BasicBlock, residual_root=False, return_levels=False,
                 pool_size=7, linear_root=False):
        super(DLA, self).__init__()
        self.channels = channels
        self.return_levels = return_levels
        self.num_classes = num_classes
        self.base_layer = nn.Sequential(
            nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
                      padding=3, bias=False),
            BatchNorm(channels[0]),
            nn.ReLU(inplace=True))
        self.level0 = self._make_conv_level(
            channels[0], channels[0], levels[0])
        self.level1 = self._make_conv_level(
            channels[0], channels[1], levels[1], stride=2)
        self.level2 = Tree(levels[2], block, channels[1], channels[2], 2,
                           level_root=False,
                           root_residual=residual_root)
        self.level3 = Tree(levels[3], block, channels[2], channels[3], 2,
                           level_root=True, root_residual=residual_root)
        self.level4 = Tree(levels[4], block, channels[3], channels[4], 2,
                           level_root=True, root_residual=residual_root)
        self.level5 = Tree(levels[5], block, channels[4], channels[5], 2,
                           level_root=True, root_residual=residual_root)

        self.avgpool = nn.AvgPool2d(pool_size)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, BatchNorm):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_level(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes:
            downsample = nn.Sequential(
                nn.MaxPool2d(stride, stride=stride),
                nn.Conv2d(inplanes, planes,
                          kernel_size=1, stride=1, bias=False),
                BatchNorm(planes),
            )

        layers = []
        layers.append(block(inplanes, planes, stride, downsample=downsample))
        for i in range(1, blocks):
            layers.append(block(inplanes, planes))

        return nn.Sequential(*layers)

    def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
        modules = []
        for i in range(convs):
            modules.extend([
                nn.Conv2d(inplanes, planes, kernel_size=3,
                          stride=stride if i == 0 else 1,
                          padding=dilation, bias=False, dilation=dilation),
                BatchNorm(planes),
                nn.ReLU(inplace=True)])
            inplanes = planes
        return nn.Sequential(*modules)


    def load_pretrained_model(self, data='imagenet', name='dla34', hash='ba72cf86'):
        
        # load model only on main process
        # to prevent redundent model caching
        if comm.is_main_process():
            model_url = get_model_url(data, name, hash)
            model_weights = model_zoo.load_url(model_url)
            del model_weights['fc.weight']
            del model_weights['fc.bias']
            self.load_state_dict(model_weights)


def dla34(pretrained=False, tricks=False, **kwargs):  # DLA-34
    model = DLA([1, 1, 1, 2, 2, 1],
                [16, 32, 64, 128, 256, 512],
                block=BasicBlock, **kwargs)
    if pretrained:
        if tricks:
            model.load_pretrained_model(data='imagenet', name='dla34+tricks', hash='24a49e58')
        else:
            model.load_pretrained_model(data='imagenet', name='dla34', hash='ba72cf86')
    return model


def dla46_c(pretrained=False, **kwargs):  # DLA-46-C
    Bottleneck.expansion = 2
    model = DLA([1, 1, 1, 2, 2, 1],
                [16, 32, 64, 64, 128, 256],
                block=Bottleneck, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla46_c', hash='2bfd52c3')
    return model


def dla46x_c(pretrained=False, **kwargs):  # DLA-X-46-C
    BottleneckX.expansion = 2
    model = DLA([1, 1, 1, 2, 2, 1],
                [16, 32, 64, 64, 128, 256],
                block=BottleneckX, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla46x_c', hash='d761bae7')
    return model


def dla60x_c(pretrained=False, **kwargs):  # DLA-X-60-C
    BottleneckX.expansion = 2
    model = DLA([1, 1, 1, 2, 3, 1],
                [16, 32, 64, 64, 128, 256],
                block=BottleneckX, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla60x_c', hash='b870c45c')
    return model


def dla60(pretrained=False, tricks=False, **kwargs):  # DLA-60
    Bottleneck.expansion = 2
    model = DLA([1, 1, 1, 2, 3, 1],
                [16, 32, 128, 256, 512, 1024],
                block=Bottleneck, **kwargs)
    if pretrained:
        if tricks:
            model.load_pretrained_model(data='imagenet', name='dla60+tricks', hash='14488826')
        else:
            model.load_pretrained_model(data='imagenet', name='dla60', hash='24839fc4')

    return model


def dla60x(pretrained=False, **kwargs):  # DLA-X-60
    BottleneckX.expansion = 2
    model = DLA([1, 1, 1, 2, 3, 1],
                [16, 32, 128, 256, 512, 1024],
                block=BottleneckX, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla60x', hash='d15cacda')
    return model


def dla102(pretrained=False, tricks=False, **kwargs):  # DLA-102
    Bottleneck.expansion = 2
    model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024],
                block=Bottleneck, residual_root=True, **kwargs)
    if pretrained:

        if tricks:
            model.load_pretrained_model(data='imagenet', name='dla102+tricks', hash='27a30eac')
        else:
            model.load_pretrained_model(data='imagenet', name='dla102', hash='d94d9790')
    return model


def dla102x(pretrained=False, **kwargs):  # DLA-X-102
    BottleneckX.expansion = 2
    model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024],
                block=BottleneckX, residual_root=True, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla102x', hash='ad62be81')
    return model


def dla102x2(pretrained=False, **kwargs):  # DLA-X-102 64
    BottleneckX.cardinality = 64
    model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024],
                block=BottleneckX, residual_root=True, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla102x2', hash='262837b6')
    return model


def dla169(pretrained=False, **kwargs):  # DLA-169
    Bottleneck.expansion = 2
    model = DLA([1, 1, 2, 3, 5, 1], [16, 32, 128, 256, 512, 1024],
                block=Bottleneck, residual_root=True, **kwargs)
    if pretrained:
        model.load_pretrained_model(data='imagenet', name='dla169', hash='0914e092')
    return model

class DLABackbone(Backbone):
    def __init__(self, cfg, input_shape, pretrained=True):
        super().__init__()

        if cfg.MODEL.DLA.TYPE == 'dla34':
            base  = dla34(pretrained=pretrained, tricks=cfg.MODEL.DLA.TRICKS)
            self._out_feature_channels = {'p2': 64, 'p3': 128, 'p4': 256, 'p5': 512, 'p6': 512}
        elif cfg.MODEL.DLA.TYPE == 'dla46_c':
            base  = dla46_c(pretrained=pretrained)
            self._out_feature_channels = {'p2': 64, 'p3': 64, 'p4': 128, 'p5': 256, 'p6': 256}
        elif cfg.MODEL.DLA.TYPE == 'dla46x_c':
            base  = dla46x_c(pretrained=pretrained)
            self._out_feature_channels = {'p2': 64, 'p3': 64, 'p4': 128, 'p5': 256, 'p6': 256}
        elif cfg.MODEL.DLA.TYPE == 'dla60x_c':
            base  = dla60x_c(pretrained=pretrained)
            self._out_feature_channels = {'p2': 64, 'p3': 64, 'p4': 128, 'p5': 256, 'p6': 256}
        elif cfg.MODEL.DLA.TYPE == 'dla60':
            base  = dla60(pretrained=pretrained, tricks=cfg.MODEL.DLA.TRICKS)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}
        elif cfg.MODEL.DLA.TYPE == 'dla60x':
            base  = dla60x(pretrained=pretrained)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}
        elif cfg.MODEL.DLA.TYPE == 'dla102':
            base  = dla102(pretrained=pretrained, tricks=cfg.MODEL.DLA.TRICKS)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}
        elif cfg.MODEL.DLA.TYPE == 'dla102x':
            base  = dla102x(pretrained=pretrained)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}
        elif cfg.MODEL.DLA.TYPE == 'dla102x2':
            base  = dla102x2(pretrained=pretrained)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}
        elif cfg.MODEL.DLA.TYPE == 'dla169':
            base  = dla169(pretrained=pretrained)
            self._out_feature_channels = {'p2': 128, 'p3': 256, 'p4': 512, 'p5': 1024, 'p6': 1024}

        self.base_layer = base.base_layer
        self.level0 = base.level0
        self.level1 = base.level1
        self.level2 = base.level2
        self.level3 = base.level3
        self.level4 = base.level4
        self.level5 = base.level5
        
        self._out_feature_strides ={'p2': 4, 'p3': 8, 'p4': 16, 'p5': 32, 'p6': 64}
        self._out_features = ['p2', 'p3', 'p4', 'p5', 'p6']
    
    def forward(self, x):

        outputs = {}
        
        base_layer = self.base_layer(x)
        level0 = self.level0(base_layer)
        level1 = self.level1(level0)
        level2 = self.level2(level1)
        level3 = self.level3(level2)
        level4 = self.level4(level3)
        level5 = self.level5(level4)
        level6 = F.max_pool2d(level5, kernel_size=1, stride=2, padding=0)

        outputs['p2'] = level2
        outputs['p3'] = level3
        outputs['p4'] = level4
        outputs['p5'] = level5
        outputs['p6'] = level6

        return outputs

@BACKBONE_REGISTRY.register()
def build_dla_from_vision_fpn_backbone(cfg, input_shape: ShapeSpec, priors=None):
    """
    Args:
        cfg: a detectron2 CfgNode

    Returns:
        backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`.
    """

    imagenet_pretrain = cfg.MODEL.WEIGHTS_PRETRAIN + cfg.MODEL.WEIGHTS == ''

    bottom_up = DLABackbone(cfg, input_shape, pretrained=imagenet_pretrain)
    in_features = cfg.MODEL.FPN.IN_FEATURES
    out_channels = cfg.MODEL.FPN.OUT_CHANNELS

    backbone = FPN(
        bottom_up=bottom_up,
        in_features=in_features,
        out_channels=out_channels,
        norm=cfg.MODEL.FPN.NORM,
        fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
    )
    return backbone