File size: 7,795 Bytes
db3da1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
from detectron2.data.catalog import MetadataCatalog
from cubercnn import data
from detectron2.structures import Boxes, BoxMode
from cubercnn.util.math_util import estimate_truncation, mat2euler, R_to_allocentric
import os
import numpy as np
from tqdm import tqdm

def perp_vector(a, b):
    return np.array([b, -a])  

def rotate_vector(x, y, theta):
    # Calculate the rotated coordinates
    x_rotated = x * np.cos(theta) - y * np.sin(theta)
    y_rotated = x * np.sin(theta) + y * np.cos(theta)
    
    return np.array([x_rotated, y_rotated])

def calculate_alpha(location, ry):
    '''
    location: x, y, z coordinates
    ry: rotation around y-axis, negative counter-clockwise,
    
    positive x-axis is to the right
    calculate the angle from a line perpendicular to the camera to the center of the bounding box'''

    # get vector from camera to object
    ry = -ry
    x, y, z = location
    # vector from [0,0,0] to the center of the bounding box
    # we can do the whole thing in 2D, top down view
    # vector perpendicular to center
    perpendicular = perp_vector(x,z)
    # vector corresponding to ry
    ry_vector = np.array([np.cos(ry), np.sin(ry)])
    # angle between perpendicular and ry_vector
    dot = perpendicular[0]*ry_vector[0] + perpendicular[1]*ry_vector[1]      # Dot product between [x1, y1] and [x2, y2]
    det = perpendicular[0]*ry_vector[1] - perpendicular[1]*ry_vector[0]      # Determinant
    alpha = -np.arctan2(det, dot)

    # wrap to -pi to pi
    if alpha > np.pi:
        alpha -= 2*np.pi
    if alpha < -np.pi:
        alpha += 2*np.pi
    return alpha

def test_calculate_alpha():
    location = [-3.67, 1.67, 6.05]
    ry = -1.24
    expected = -0.72
    result1 = calculate_alpha(location, ry)

    location = [-9.48, 2.08, 26.41]
    ry = 1.77
    expected = 2.11
    result2 = calculate_alpha(location, ry)

    location = [4.19, 1.46, 44.41]
    ry = -1.35
    expected = -1.45
    result3 = calculate_alpha(location, ry)

    location = [-6.41, 2.04, 46.74]
    ry = 1.68
    expected = 1.82
    result4 = calculate_alpha(location, ry)

    location = [0.28, 2.08, 17.74]
    ry = -1.58
    expected = -1.59
    result5 = calculate_alpha(location, ry)

    location = [-3.21, 1.97, 11.22]
    ry = -0.13
    expected = 0.15
    result6 = calculate_alpha(location, ry)

    # assert np.isclose(result, expected, atol=0.01)
    return result1


def main():
    alpha = test_calculate_alpha()


    name = 'KITTI'
    split = 'test'
    dataset_paths_to_json = [f'datasets/Omni3D/{name}_{split}.json',]
    os.makedirs('output/KITTI_formatted_predictions', exist_ok=True)

    # Example 1. load all images
    dataset = data.Omni3D(dataset_paths_to_json)
    imgIds = dataset.getImgIds()
    imgs = dataset.loadImgs(imgIds)

    # Example 2. load annotations for image index 0
    annIds = dataset.getAnnIds(imgIds=imgs[0]['id'])
    anns = dataset.loadAnns(annIds)

    data.register_and_store_model_metadata(dataset, 'output')

    thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
    dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
    cats = {'pedestrian', 'car', 'cyclist', 'van', 'truck'}

    input_folder = 'kitti_omni_eq'

    out_path = 'output/'+input_folder+'/KITTI_formatted_predictions/'
    in_path = 'output/'+input_folder+'/KITTI_pred/instances_predictions.pth'
    print('saving to', out_path)
    data_json = torch.load(in_path)
    # 
    # reference
    # https://github.com/ZrrSkywalker/MonoDETR/blob/c724572bddbc067832a0e0d860a411003f36c2fa/lib/helpers/tester_helper.py#L114
    files = {}
    for image in tqdm(data_json):
        K = image['K']
        K_inv = np.linalg.inv(K)
        width, height = image['width'], image['height']
        image_id = image['image_id']
        l = []
        for pred in image['instances']:

            category = thing_classes[pred['category_id']]
            if category not in cats:
                continue
            occluded = 0
            # truncation = estimate_truncation(K, torch.tensor([x3d, y3d, z3d, w3d, h3d, l3d]), pred['pose'], width, height)
            truncation = 0.0 # it does not matter
            rotation_y = mat2euler(np.array(pred['pose']))[1]
            bbox = BoxMode.convert(pred['bbox'], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) # x1, y1, x2, y2 -> convert to left, top, right, bottom
            h3d, w3d, l3d = pred['dimensions']
            # unproject, this should yield the same 
            # cen_2d = np.array(pred['center_2D'] + [1])
            # z3d = pred['center_cam'][2]
            # x3d, y3d, z3d = (K_inv @ (z3d*cen_2d))

            x3d, y3d, z3d = pred['center_cam']

            location = pred['center_cam']
            score = pred['score']
            alpha = calculate_alpha(location, rotation_y)

            # convert to KITTI format
            li = [category, truncation, occluded, alpha, bbox[0], bbox[1], bbox[2], bbox[3], h3d, w3d, l3d, x3d, y3d, z3d, rotation_y, score]
            l.append(li)
        # sort l by z3d
        l = sorted(l, key=lambda x: x[13])
        files[image_id] = l

    # 7518 test images
    os.makedirs(out_path, exist_ok=True)
    for img_id, content in files.items():

        img_id_str = str(img_id).zfill(6)
        with open(out_path+f'{img_id_str}.txt', 'w') as f:
            str_i = ''
            for i in content:
                # t = f'{category} {truncation:.2f} {occluded} {alpha:.2f} {bbox[0]:.2f} {bbox[1]:.2f} {bbox[2]:.2f} {bbox[3]:.2f} {w3d:.2f} {h3d:.2f} {l3d:.2f} {x3d:.2f} {y3d:.2f} {z3d:.2f} {rotation_y:.2f} {score:.2f}\n'
                t = f'{i[0][0].upper() + i[0][1:]} {i[1]:.2f} {i[2]} {i[3]:.2f} {i[4]:.2f} {i[5]:.2f} {i[6]:.2f} {i[7]:.2f} {i[8]:.2f} {i[9]:.2f} {i[10]:.2f} {i[11]:.2f} {i[12]:.2f} {i[13]:.2f} {i[14]:.2f} {i[15]:.2f}\n'
                str_i += t
            f.write(str_i)

if __name__ == '__main__':
    main()

# write to file 
# #Values    Name      Description
# ----------------------------------------------------------------------------
#    1    type         Describes the type of object: 'Car', 'Van', 'Truck',
#                      'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
#                      'Misc' or 'DontCare'
#    1    truncated    Float from 0 (non-truncated) to 1 (truncated), where
#                      truncated refers to the object leaving image boundaries
#    1    occluded     Integer (0,1,2,3) indicating occlusion state:
#                      0 = fully visible, 1 = partly occluded
#                      2 = largely occluded, 3 = unknown
#    1    alpha        Observation angle of object, ranging [-pi..pi]
#    4    bbox         2D bounding box of object in the image (0-based index):
#                      contains left, top, right, bottom pixel coordinates
#    3    dimensions   3D object dimensions: height, width, length (in meters)
#    3    location     3D object location x,y,z in camera coordinates (in meters)
#    1    rotation_y   Rotation ry around Y-axis in camera coordinates [-pi..pi]
#    1    score        Only for results: Float, indicating confidence in
#                      detection, needuhued for p/r curves, higher is better.

# output to files 000000.txt 000001.txt ... 

# example file
# Car 0.00 0 -1.56 564.62 174.59 616.43 224.74 1.61 1.66 3.20 -0.69 1.69 25.01 -1.59
# Car 0.00 0 1.71 481.59 180.09 512.55 202.42 1.40 1.51 3.70 -7.43 1.88 47.55 1.55
# Car 0.00 0 1.64 542.05 175.55 565.27 193.79 1.46 1.66 4.05 -4.71 1.71 60.52 1.56
# Cyclist 0.00 0 1.89 330.60 176.09 355.61 213.60 1.72 0.50 1.95 -12.63 1.88 34.09 1.54
# DontCare -1 -1 -10 753.33 164.32 798.00 186.74 -1 -1 -1 -1000 -1000 -1000 -10
# DontCare -1 -1 -10 738.50 171.32 753.27 184.42 -1 -1 -1 -1000 -1000 -1000 -10