File size: 8,399 Bytes
db3da1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from segment_anything import sam_model_registry
from segment_anything.modeling import Sam
import os

def init_segmentation(device='cpu') -> Sam:
    # 1) first cd into the segment_anything and pip install -e .
    # to get the model stary in the root foler folder and run the download_model.sh 
    # 2) chmod +x download_model.sh && ./download_model.sh
    # the largest model: https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
    # this is the smallest model
    if os.path.exists('sam-hq/sam_hq_vit_b.pth'):
        sam_checkpoint = "sam-hq/sam_hq_vit_b.pth"
        model_type = "vit_b"
    else:
        sam_checkpoint = "sam-hq/sam_hq_vit_tiny.pth"
        model_type = "vit_tiny"
    print(f'SAM device: {device}, model_type: {model_type}')
    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    sam.to(device=device)
    return sam


if __name__ == '__main__':
    from segment_anything.utils.transforms import ResizeLongestSide
    import numpy as np
    import pandas as pd
    import torch
    import torchvision.transforms as T2
    from matplotlib import pyplot as plt
    from PIL import Image
    from tqdm import tqdm
    from torchvision.ops import box_convert

    import groundingdino.datasets.transforms as T
    from cubercnn import data
    from detectron2.data.catalog import MetadataCatalog
    from groundingdino.util.inference import load_image, load_model, predict
    from priors import get_config_and_filter_settings
    import supervision as sv
    
    def init_dataset():
        ''' dataloader stuff.
        currently not used anywhere, because I'm not sure what the difference between the omni3d dataset and load omni3D json functions are. this is a 3rd alternative to this. The train script calls something similar to this.'''
        cfg, filter_settings = get_config_and_filter_settings()

        dataset_names = ['SUNRGBD_train','SUNRGBD_val','SUNRGBD_test', 'KITTI_train', 'KITTI_val', 'KITTI_test',]
        dataset_paths_to_json = ['datasets/Omni3D/'+dataset_name+'.json' for dataset_name in dataset_names]
        # for dataset_name in dataset_names:
        #     simple_register(dataset_name, filter_settings, filter_empty=True)

        # Get Image and annotations
        datasets = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
        data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)


        thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
        dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id

        infos = datasets.dataset['info']

        dataset_id_to_unknown_cats = {}
        possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
        
        dataset_id_to_src = {}

        for info in infos:
            dataset_id = info['id']
            known_category_training_ids = set()
            
            if not dataset_id in dataset_id_to_src:
                dataset_id_to_src[dataset_id] = info['source']

            for id in info['known_category_ids']:
                if id in dataset_id_to_contiguous_id:
                    known_category_training_ids.add(dataset_id_to_contiguous_id[id])
            
            # determine and store the unknown categories.
            unknown_categories = possible_categories - known_category_training_ids
            dataset_id_to_unknown_cats[dataset_id] = unknown_categories

        return datasets

    def load_image(image_path: str, device) -> tuple[torch.Tensor, torch.Tensor]:
        transform = T.Compose(
            [
                # T.RandomResize([800], max_size=1333),
                T.ToTensor(),
                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )
        transform2 = T2.ToTensor()
        image_source = Image.open(image_path).convert("RGB")
        image = transform2(image_source).to(device)
        image_transformed, _ = transform(image_source, None)
        return image, image_transformed.to(device)


    def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: list[str]) -> np.ndarray:
        """    
        This function annotates an image with bounding boxes and labels.

        Parameters:
        image_source (np.ndarray): The source image to be annotated.
        boxes (torch.Tensor): A tensor containing bounding box coordinates.
        logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
        phrases (List[str]): A list of labels for each bounding box.

        Returns:
        np.ndarray: The annotated image.
        """
        h, w, _ = image_source.shape
        boxes = boxes * torch.Tensor([w, h, w, h])
        xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
        detections = sv.Detections(xyxy=xyxy)

        labels = [
            f"{phrase} {logit:.2f}"
            for phrase, logit
            in zip(phrases, logits)
        ]

        box_annotator = sv.BoxAnnotator()
        # annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
        annotated_frame = image_source.copy()
        annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
        return annotated_frame


    datasets = init_dataset()

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model.to(device)

    segmentor = init_segmentation(device=device)

    os.makedirs('datasets/ground_maps', exist_ok=True)
    model = load_model("GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", "GroundingDINO/weights/groundingdino_swint_ogc.pth", device=device)
    TEXT_PROMPT = "ground"
    BOX_TRESHOLD = 0.35
    TEXT_TRESHOLD = 0.25

    noground = 0
    no_ground_idx = []

    #  **** to annotate full dataset ****
    for img_id, img_info in tqdm(datasets.imgs.items()):
        file_path = img_info['file_path']
        w = img_info['width']
        h = img_info['height']
    #  **** to annotate full dataset ****
    #  **** to annotate demo images ****
    # for img_id in tqdm(os.listdir('datasets/coco_examples')):
    #     file_path = 'coco_examples/'+img_id
        image_source, image = load_image('datasets/'+file_path, device=device)
    #  **** to annotate demo images ****

        boxes, logits, phrases = predict(
            model=model,
            image=image,
            caption=TEXT_PROMPT,
            box_threshold=BOX_TRESHOLD,
            text_threshold=TEXT_TRESHOLD,
            device=device
        )
        if len(boxes) == 0:
            print(f"No ground found for {img_id}")
            noground += 1
            # save a ground map that is all zeros
            no_ground_idx.append(img_id)
            continue
        # only want box corresponding to max logit
        max_logit_idx = torch.argmax(logits)
        logit = logits[max_logit_idx].unsqueeze(0)
        box = boxes[max_logit_idx].unsqueeze(0)
        phrase = [phrases[max_logit_idx]]

        _, h, w = image_source.shape
        box = box * torch.tensor([w, h, w, h], device=device)
        xyxy = box_convert(boxes=box, in_fmt="cxcywh", out_fmt="xyxy")

        image = image.unsqueeze(0)
        org_shape = image.shape[-2:]
        resize_transform = ResizeLongestSide(segmentor.image_encoder.img_size)
        batched_input = []
        images = resize_transform.apply_image_torch(image*1.0)# .permute(2, 0, 1).contiguous()
        for image, boxes in zip(images, xyxy):
            transformed_boxes = resize_transform.apply_boxes_torch(boxes, org_shape) # Bx4
            batched_input.append({'image': image, 'boxes': transformed_boxes, 'original_size':org_shape})

        seg_out = segmentor(batched_input, multimask_output=False)
        mask_per_image = seg_out[0]['masks']

        nnz = torch.count_nonzero(mask_per_image, dim=(-2, -1))
        indices = torch.nonzero(nnz <= 1000).flatten()
        if len(indices) > 0:
            noground += 1
            # save a ground map that is all zeros
            no_ground_idx.append(img_id)

        np.savez_compressed(f'datasets/ground_maps/{img_id}.npz', mask=mask_per_image.cpu()[0,0,:,:].numpy())

    print(f"Could not find ground for {noground} images")


    df = pd.DataFrame(no_ground_idx, columns=['img_id'])
    df.to_csv('datasets/no_ground_idx.csv', index=False)