Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from detectron2.structures import Boxes | |
def cube_to_box(cube,K): | |
''' | |
Converts a Cube to a Box. | |
Args: | |
cube: A Cube. | |
K: The 3D camera matrix of the box. | |
Returns: | |
A Box. | |
''' | |
bube_corners = cube.get_bube_corners(K) | |
min_x = torch.min(bube_corners[:,0]) | |
max_x = torch.max(bube_corners[:,0]) | |
min_y = torch.min(bube_corners[:,1]) | |
max_y = torch.max(bube_corners[:,1]) | |
return Boxes(torch.tensor([[min_x, min_y, max_x, max_y]], device=cube.tensor.device)) | |
def cubes_to_box(cubes, K, im_shape): | |
''' | |
Converts a Cubes to a Boxes. | |
Args: | |
cubes: A Cubes. | |
K: The 3D camera matrix of the box. | |
im_shape: The shape of the image (width, height). | |
Returns: | |
A Box. | |
''' | |
bube_corners = cubes.get_bube_corners(K, im_shape) | |
min_x, _ = torch.min(bube_corners[:, :, :, 0], 2) | |
max_x, _ = torch.max(bube_corners[:, :, :, 0], 2) | |
min_y, _ = torch.min(bube_corners[:, :, :, 1], 2) | |
max_y, _ = torch.max(bube_corners[:, :, :, 1], 2) | |
values = torch.stack((min_x, min_y, max_x, max_y),dim=2) | |
box_list = [] | |
for i in range(cubes.num_instances): | |
box_list.append(Boxes(values[i])) | |
return box_list | |