Spaces:
Configuration error
Configuration error
| # -*- coding: utf-8 -*- | |
| # @Author : wenshao | |
| # @Email : [email protected] | |
| # @Project : FasterLivePortrait | |
| # @FileName: face_analysis_model.py | |
| import pdb | |
| import numpy as np | |
| from insightface.app.common import Face | |
| import cv2 | |
| from .predictor import get_predictor | |
| from ..utils import face_align | |
| import torch | |
| from torch.cuda import nvtx | |
| from .predictor import numpy_to_torch_dtype_dict | |
| def sort_by_direction(faces, direction: str = 'large-small', face_center=None): | |
| if len(faces) <= 0: | |
| return faces | |
| if direction == 'left-right': | |
| return sorted(faces, key=lambda face: face['bbox'][0]) | |
| if direction == 'right-left': | |
| return sorted(faces, key=lambda face: face['bbox'][0], reverse=True) | |
| if direction == 'top-bottom': | |
| return sorted(faces, key=lambda face: face['bbox'][1]) | |
| if direction == 'bottom-top': | |
| return sorted(faces, key=lambda face: face['bbox'][1], reverse=True) | |
| if direction == 'small-large': | |
| return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) | |
| if direction == 'large-small': | |
| return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), | |
| reverse=True) | |
| if direction == 'distance-from-retarget-face': | |
| return sorted(faces, key=lambda face: (((face['bbox'][2] + face['bbox'][0]) / 2 - face_center[0]) ** 2 + ( | |
| (face['bbox'][3] + face['bbox'][1]) / 2 - face_center[1]) ** 2) ** 0.5) | |
| return faces | |
| def distance2bbox(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| x1 = points[:, 0] - distance[:, 0] | |
| y1 = points[:, 1] - distance[:, 1] | |
| x2 = points[:, 0] + distance[:, 2] | |
| y2 = points[:, 1] + distance[:, 3] | |
| if max_shape is not None: | |
| x1 = x1.clamp(min=0, max=max_shape[1]) | |
| y1 = y1.clamp(min=0, max=max_shape[0]) | |
| x2 = x2.clamp(min=0, max=max_shape[1]) | |
| y2 = y2.clamp(min=0, max=max_shape[0]) | |
| return np.stack([x1, y1, x2, y2], axis=-1) | |
| def distance2kps(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| preds = [] | |
| for i in range(0, distance.shape[1], 2): | |
| px = points[:, i % 2] + distance[:, i] | |
| py = points[:, i % 2 + 1] + distance[:, i + 1] | |
| if max_shape is not None: | |
| px = px.clamp(min=0, max=max_shape[1]) | |
| py = py.clamp(min=0, max=max_shape[0]) | |
| preds.append(px) | |
| preds.append(py) | |
| return np.stack(preds, axis=-1) | |
| class FaceAnalysisModel: | |
| def __init__(self, **kwargs): | |
| self.model_paths = kwargs.get("model_path", []) | |
| self.predict_type = kwargs.get("predict_type", "trt") | |
| self.device = torch.cuda.current_device() | |
| self.cudaStream = torch.cuda.current_stream().cuda_stream | |
| assert self.model_paths | |
| self.face_det = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[0]) | |
| self.face_det.input_spec() | |
| self.face_det.output_spec() | |
| self.face_pose = get_predictor(predict_type=self.predict_type, model_path=self.model_paths[1]) | |
| self.face_pose.input_spec() | |
| self.face_pose.output_spec() | |
| # face det | |
| self.input_mean = 127.5 | |
| self.input_std = 128.0 | |
| # print(self.output_names) | |
| # assert len(outputs)==10 or len(outputs)==15 | |
| self.use_kps = False | |
| self._anchor_ratio = 1.0 | |
| self._num_anchors = 1 | |
| self.center_cache = {} | |
| self.nms_thresh = 0.4 | |
| self.det_thresh = 0.5 | |
| self.input_size = (512, 512) | |
| if len(self.face_det.outputs) == 6: | |
| self.fmc = 3 | |
| self._feat_stride_fpn = [8, 16, 32] | |
| self._num_anchors = 2 | |
| elif len(self.face_det.outputs) == 9: | |
| self.fmc = 3 | |
| self._feat_stride_fpn = [8, 16, 32] | |
| self._num_anchors = 2 | |
| self.use_kps = True | |
| elif len(self.face_det.outputs) == 10: | |
| self.fmc = 5 | |
| self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| elif len(self.face_det.outputs) == 15: | |
| self.fmc = 5 | |
| self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| self.use_kps = True | |
| self.lmk_dim = 2 | |
| self.lmk_num = 212 // self.lmk_dim | |
| def nms(self, dets): | |
| thresh = self.nms_thresh | |
| x1 = dets[:, 0] | |
| y1 = dets[:, 1] | |
| x2 = dets[:, 2] | |
| y2 = dets[:, 3] | |
| scores = dets[:, 4] | |
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| order = scores.argsort()[::-1] | |
| keep = [] | |
| while order.size > 0: | |
| i = order[0] | |
| keep.append(i) | |
| xx1 = np.maximum(x1[i], x1[order[1:]]) | |
| yy1 = np.maximum(y1[i], y1[order[1:]]) | |
| xx2 = np.minimum(x2[i], x2[order[1:]]) | |
| yy2 = np.minimum(y2[i], y2[order[1:]]) | |
| w = np.maximum(0.0, xx2 - xx1 + 1) | |
| h = np.maximum(0.0, yy2 - yy1 + 1) | |
| inter = w * h | |
| ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
| inds = np.where(ovr <= thresh)[0] | |
| order = order[inds + 1] | |
| return keep | |
| def detect_face(self, *data): | |
| img = data[0] # BGR mode | |
| im_ratio = float(img.shape[0]) / img.shape[1] | |
| input_size = self.input_size | |
| model_ratio = float(input_size[1]) / input_size[0] | |
| if im_ratio > model_ratio: | |
| new_height = input_size[1] | |
| new_width = int(new_height / im_ratio) | |
| else: | |
| new_width = input_size[0] | |
| new_height = int(new_width * im_ratio) | |
| det_scale = float(new_height) / img.shape[0] | |
| resized_img = cv2.resize(img, (new_width, new_height)) | |
| det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) | |
| det_img[:new_height, :new_width, :] = resized_img | |
| scores_list = [] | |
| bboxes_list = [] | |
| kpss_list = [] | |
| input_size = tuple(img.shape[0:2][::-1]) | |
| det_img = cv2.cvtColor(det_img, cv2.COLOR_BGR2RGB) | |
| det_img = np.transpose(det_img, (2, 0, 1)) | |
| det_img = (det_img - self.input_mean) / self.input_std | |
| if self.predict_type == "trt": | |
| nvtx.range_push("forward") | |
| feed_dict = {} | |
| inp = self.face_det.inputs[0] | |
| det_img_torch = torch.from_numpy(det_img[None]).to(device=self.device, | |
| dtype=numpy_to_torch_dtype_dict[inp['dtype']]) | |
| feed_dict[inp['name']] = det_img_torch | |
| preds_dict = self.face_det.predict(feed_dict, self.cudaStream) | |
| outs = [] | |
| for key in ["448", "471", "494", "451", "474", "497", "454", "477", "500"]: | |
| outs.append(preds_dict[key].cpu().numpy()) | |
| o448, o471, o494, o451, o474, o497, o454, o477, o500 = outs | |
| nvtx.range_pop() | |
| else: | |
| o448, o471, o494, o451, o474, o497, o454, o477, o500 = self.face_det.predict(det_img[None]) | |
| faces_det = [o448, o471, o494, o451, o474, o497, o454, o477, o500] | |
| input_height = det_img.shape[1] | |
| input_width = det_img.shape[2] | |
| fmc = self.fmc | |
| for idx, stride in enumerate(self._feat_stride_fpn): | |
| scores = faces_det[idx] | |
| bbox_preds = faces_det[idx + fmc] | |
| bbox_preds = bbox_preds * stride | |
| if self.use_kps: | |
| kps_preds = faces_det[idx + fmc * 2] * stride | |
| height = input_height // stride | |
| width = input_width // stride | |
| K = height * width | |
| key = (height, width, stride) | |
| if key in self.center_cache: | |
| anchor_centers = self.center_cache[key] | |
| else: | |
| # solution-3: | |
| anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
| # print(anchor_centers.shape) | |
| anchor_centers = (anchor_centers * stride).reshape((-1, 2)) | |
| if self._num_anchors > 1: | |
| anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) | |
| if len(self.center_cache) < 100: | |
| self.center_cache[key] = anchor_centers | |
| pos_inds = np.where(scores >= self.det_thresh)[0] | |
| bboxes = distance2bbox(anchor_centers, bbox_preds) | |
| pos_scores = scores[pos_inds] | |
| pos_bboxes = bboxes[pos_inds] | |
| scores_list.append(pos_scores) | |
| bboxes_list.append(pos_bboxes) | |
| if self.use_kps: | |
| kpss = distance2kps(anchor_centers, kps_preds) | |
| # kpss = kps_preds | |
| kpss = kpss.reshape((kpss.shape[0], -1, 2)) | |
| pos_kpss = kpss[pos_inds] | |
| kpss_list.append(pos_kpss) | |
| scores = np.vstack(scores_list) | |
| scores_ravel = scores.ravel() | |
| order = scores_ravel.argsort()[::-1] | |
| bboxes = np.vstack(bboxes_list) / det_scale | |
| if self.use_kps: | |
| kpss = np.vstack(kpss_list) / det_scale | |
| pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
| pre_det = pre_det[order, :] | |
| keep = self.nms(pre_det) | |
| det = pre_det[keep, :] | |
| if self.use_kps: | |
| kpss = kpss[order, :, :] | |
| kpss = kpss[keep, :, :] | |
| else: | |
| kpss = None | |
| return det, kpss | |
| def estimate_face_pose(self, *data): | |
| """ | |
| 检测脸部关键点 | |
| :param data: | |
| :return: | |
| """ | |
| img, face = data | |
| bbox = face.bbox | |
| w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
| center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
| rotate = 0 | |
| input_size = (192, 192) | |
| _scale = input_size[0] / (max(w, h) * 1.5) | |
| aimg, M = face_align.transform(img, center, input_size[0], _scale, rotate) | |
| input_size = tuple(aimg.shape[0:2][::-1]) | |
| aimg = cv2.cvtColor(aimg, cv2.COLOR_BGR2RGB) | |
| aimg = np.transpose(aimg, (2, 0, 1)) | |
| if self.predict_type == "trt": | |
| nvtx.range_push("forward") | |
| feed_dict = {} | |
| inp = self.face_pose.inputs[0] | |
| det_img_torch = torch.from_numpy(aimg[None]).to(device=self.device, | |
| dtype=numpy_to_torch_dtype_dict[inp['dtype']]) | |
| feed_dict[inp['name']] = det_img_torch | |
| preds_dict = self.face_pose.predict(feed_dict, self.cudaStream) | |
| outs = [] | |
| for i, out in enumerate(self.face_pose.outputs): | |
| outs.append(preds_dict[out["name"]].cpu().numpy()) | |
| pred = outs[0] | |
| nvtx.range_pop() | |
| else: | |
| pred = self.face_pose.predict(aimg[None])[0] | |
| pred = pred.reshape((-1, 2)) | |
| if self.lmk_num < pred.shape[0]: | |
| pred = pred[self.lmk_num * -1:, :] | |
| pred[:, 0:2] += 1 | |
| pred[:, 0:2] *= (input_size[0] // 2) | |
| if pred.shape[1] == 3: | |
| pred[:, 2] *= (input_size[0] // 2) | |
| IM = cv2.invertAffineTransform(M) | |
| pred = face_align.trans_points(pred, IM) | |
| face["landmark"] = pred | |
| return pred | |
| def predict(self, *data, **kwargs): | |
| bboxes, kpss = self.detect_face(*data) | |
| if bboxes.shape[0] == 0: | |
| return [] | |
| ret = [] | |
| for i in range(bboxes.shape[0]): | |
| bbox = bboxes[i, 0:4] | |
| det_score = bboxes[i, 4] | |
| kps = kpss[i] | |
| face = Face(bbox=bbox, kps=kps, det_score=det_score) | |
| self.estimate_face_pose(data[0], face) | |
| ret.append(face) | |
| ret = sort_by_direction(ret, 'large-small', None) | |
| outs = [x.landmark for x in ret] | |
| return outs | |
| def __del__(self): | |
| del self.face_det | |
| del self.face_pose | |