Spaces:
Sleeping
Sleeping
Commit
·
27be9ef
1
Parent(s):
af84a93
Check point 4
Browse files
app.py
CHANGED
|
@@ -10,18 +10,15 @@ import torchaudio
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
-
from fastrtc import Stream, AsyncStreamHandler
|
| 14 |
import json
|
|
|
|
|
|
|
| 15 |
import asyncio
|
| 16 |
import uvicorn
|
|
|
|
| 17 |
from queue import Queue
|
| 18 |
-
import
|
| 19 |
-
from fastrtc import WebRTC
|
| 20 |
-
|
| 21 |
-
# Set up logging
|
| 22 |
-
logging.basicConfig(level=logging.INFO)
|
| 23 |
-
logger = logging.getLogger(__name__)
|
| 24 |
-
|
| 25 |
# Simplified configuration parameters
|
| 26 |
SILENCE_THRESHS = [0, 0.4]
|
| 27 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
@@ -35,31 +32,35 @@ MIN_LENGTH_OF_RECORDING = 0.7
|
|
| 35 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
| 36 |
|
| 37 |
# Speaker change detection parameters
|
| 38 |
-
DEFAULT_CHANGE_THRESHOLD = 0.
|
| 39 |
EMBEDDING_HISTORY_SIZE = 5
|
| 40 |
-
MIN_SEGMENT_DURATION = 1.
|
| 41 |
DEFAULT_MAX_SPEAKERS = 4
|
| 42 |
-
ABSOLUTE_MAX_SPEAKERS =
|
| 43 |
|
| 44 |
# Global variables
|
|
|
|
| 45 |
SAMPLE_RATE = 16000
|
| 46 |
-
BUFFER_SIZE =
|
| 47 |
CHANNELS = 1
|
| 48 |
|
| 49 |
-
# Speaker colors
|
| 50 |
SPEAKER_COLORS = [
|
| 51 |
-
"#
|
| 52 |
-
"#
|
| 53 |
-
"#
|
| 54 |
-
"#
|
| 55 |
-
"#
|
| 56 |
-
"#
|
| 57 |
-
"#
|
| 58 |
-
"#
|
|
|
|
|
|
|
| 59 |
]
|
| 60 |
|
| 61 |
SPEAKER_COLOR_NAMES = [
|
| 62 |
-
"
|
|
|
|
| 63 |
]
|
| 64 |
|
| 65 |
|
|
@@ -73,11 +74,24 @@ class SpeechBrainEncoder:
|
|
| 73 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 74 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
def load_model(self):
|
| 77 |
"""Load the ECAPA-TDNN model"""
|
| 78 |
try:
|
| 79 |
from speechbrain.pretrained import EncoderClassifier
|
| 80 |
|
|
|
|
|
|
|
| 81 |
self.model = EncoderClassifier.from_hparams(
|
| 82 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 83 |
savedir=self.cache_dir,
|
|
@@ -85,10 +99,9 @@ class SpeechBrainEncoder:
|
|
| 85 |
)
|
| 86 |
|
| 87 |
self.model_loaded = True
|
| 88 |
-
logger.info("ECAPA-TDNN model loaded successfully!")
|
| 89 |
return True
|
| 90 |
except Exception as e:
|
| 91 |
-
|
| 92 |
return False
|
| 93 |
|
| 94 |
def embed_utterance(self, audio, sr=16000):
|
|
@@ -98,15 +111,10 @@ class SpeechBrainEncoder:
|
|
| 98 |
|
| 99 |
try:
|
| 100 |
if isinstance(audio, np.ndarray):
|
| 101 |
-
|
| 102 |
-
audio = audio.astype(np.float32)
|
| 103 |
-
if np.max(np.abs(audio)) > 1.0:
|
| 104 |
-
audio = audio / np.max(np.abs(audio))
|
| 105 |
-
waveform = torch.tensor(audio).unsqueeze(0)
|
| 106 |
else:
|
| 107 |
waveform = audio.unsqueeze(0)
|
| 108 |
|
| 109 |
-
# Resample if necessary
|
| 110 |
if sr != 16000:
|
| 111 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 112 |
|
|
@@ -115,7 +123,7 @@ class SpeechBrainEncoder:
|
|
| 115 |
|
| 116 |
return embedding.squeeze().cpu().numpy()
|
| 117 |
except Exception as e:
|
| 118 |
-
|
| 119 |
return np.zeros(self.embedding_dim)
|
| 120 |
|
| 121 |
|
|
@@ -123,60 +131,41 @@ class AudioProcessor:
|
|
| 123 |
"""Processes audio data to extract speaker embeddings"""
|
| 124 |
def __init__(self, encoder):
|
| 125 |
self.encoder = encoder
|
| 126 |
-
self.audio_buffer = []
|
| 127 |
-
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
|
| 128 |
-
|
| 129 |
-
def add_audio_chunk(self, audio_chunk):
|
| 130 |
-
"""Add audio chunk to buffer"""
|
| 131 |
-
self.audio_buffer.extend(audio_chunk)
|
| 132 |
-
|
| 133 |
-
# Keep buffer from getting too large
|
| 134 |
-
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
|
| 135 |
-
if len(self.audio_buffer) > max_buffer_size:
|
| 136 |
-
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
|
| 137 |
|
| 138 |
-
def
|
| 139 |
-
"""Extract embedding from current audio buffer"""
|
| 140 |
-
if len(self.audio_buffer) < self.min_audio_length:
|
| 141 |
-
return None
|
| 142 |
-
|
| 143 |
try:
|
| 144 |
-
|
| 145 |
-
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
return None
|
| 152 |
|
| 153 |
-
embedding = self.encoder.embed_utterance(audio_segment)
|
| 154 |
return embedding
|
| 155 |
except Exception as e:
|
| 156 |
-
|
| 157 |
-
return
|
| 158 |
|
| 159 |
|
| 160 |
class SpeakerChangeDetector:
|
| 161 |
-
"""
|
| 162 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 163 |
self.embedding_dim = embedding_dim
|
| 164 |
self.change_threshold = change_threshold
|
| 165 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 166 |
self.current_speaker = 0
|
| 167 |
-
self.
|
| 168 |
-
self.speaker_centroids = [None] * self.max_speakers
|
| 169 |
self.last_change_time = time.time()
|
| 170 |
-
self.
|
|
|
|
|
|
|
| 171 |
self.active_speakers = set([0])
|
| 172 |
-
self.segment_counter = 0
|
| 173 |
|
| 174 |
def set_max_speakers(self, max_speakers):
|
| 175 |
"""Update the maximum number of speakers"""
|
| 176 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 177 |
|
| 178 |
if new_max < self.max_speakers:
|
| 179 |
-
# Remove speakers beyond the new limit
|
| 180 |
for speaker_id in list(self.active_speakers):
|
| 181 |
if speaker_id >= new_max:
|
| 182 |
self.active_speakers.discard(speaker_id)
|
|
@@ -184,85 +173,85 @@ class SpeakerChangeDetector:
|
|
| 184 |
if self.current_speaker >= new_max:
|
| 185 |
self.current_speaker = 0
|
| 186 |
|
| 187 |
-
# Resize arrays
|
| 188 |
if new_max > self.max_speakers:
|
|
|
|
| 189 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
| 190 |
-
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
|
| 191 |
else:
|
|
|
|
| 192 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
| 193 |
-
self.speaker_centroids = self.speaker_centroids[:new_max]
|
| 194 |
|
| 195 |
self.max_speakers = new_max
|
| 196 |
|
| 197 |
def set_change_threshold(self, threshold):
|
| 198 |
"""Update the threshold for detecting speaker changes"""
|
| 199 |
-
self.change_threshold = max(0.1, min(threshold, 0.
|
| 200 |
|
| 201 |
def add_embedding(self, embedding, timestamp=None):
|
| 202 |
-
"""Add a new embedding and
|
| 203 |
current_time = timestamp or time.time()
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
self.
|
| 209 |
-
|
| 210 |
-
self.
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
if current_centroid is not None:
|
| 216 |
-
similarity = 1.0 - cosine(embedding, current_centroid)
|
| 217 |
else:
|
| 218 |
-
similarity = 0.
|
| 219 |
|
| 220 |
self.last_similarity = similarity
|
| 221 |
|
| 222 |
-
# Check for speaker change
|
| 223 |
time_since_last_change = current_time - self.last_change_time
|
| 224 |
-
|
| 225 |
|
| 226 |
-
if time_since_last_change >= MIN_SEGMENT_DURATION
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
self.active_speakers
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# Update speaker embeddings and centroids
|
| 256 |
-
self.speaker_embeddings[self.current_speaker].append(embedding)
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
|
| 262 |
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
if self.speaker_embeddings[self.current_speaker]:
|
| 265 |
-
self.
|
| 266 |
self.speaker_embeddings[self.current_speaker], axis=0
|
| 267 |
)
|
| 268 |
|
|
@@ -275,7 +264,7 @@ class SpeakerChangeDetector:
|
|
| 275 |
return "#FFFFFF"
|
| 276 |
|
| 277 |
def get_status_info(self):
|
| 278 |
-
"""Return status information"""
|
| 279 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 280 |
|
| 281 |
return {
|
|
@@ -284,8 +273,7 @@ class SpeakerChangeDetector:
|
|
| 284 |
"active_speakers": len(self.active_speakers),
|
| 285 |
"max_speakers": self.max_speakers,
|
| 286 |
"last_similarity": self.last_similarity,
|
| 287 |
-
"threshold": self.change_threshold
|
| 288 |
-
"segment_counter": self.segment_counter
|
| 289 |
}
|
| 290 |
|
| 291 |
|
|
@@ -299,18 +287,19 @@ class RealtimeSpeakerDiarization:
|
|
| 299 |
self.full_sentences = []
|
| 300 |
self.sentence_speakers = []
|
| 301 |
self.pending_sentences = []
|
| 302 |
-
self.
|
|
|
|
| 303 |
self.is_running = False
|
| 304 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 305 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 306 |
-
self.
|
| 307 |
-
self.
|
| 308 |
|
| 309 |
def initialize_models(self):
|
| 310 |
"""Initialize the speaker encoder model"""
|
| 311 |
try:
|
| 312 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 313 |
-
|
| 314 |
|
| 315 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 316 |
success = self.encoder.load_model()
|
|
@@ -322,94 +311,80 @@ class RealtimeSpeakerDiarization:
|
|
| 322 |
change_threshold=self.change_threshold,
|
| 323 |
max_speakers=self.max_speakers
|
| 324 |
)
|
| 325 |
-
|
| 326 |
return True
|
| 327 |
else:
|
| 328 |
-
|
| 329 |
return False
|
| 330 |
except Exception as e:
|
| 331 |
-
|
| 332 |
return False
|
| 333 |
|
| 334 |
def live_text_detected(self, text):
|
| 335 |
"""Callback for real-time transcription updates"""
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
def process_final_text(self, text):
|
| 340 |
"""Process final transcribed text with speaker embedding"""
|
| 341 |
text = text.strip()
|
| 342 |
if text:
|
| 343 |
try:
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
self.sentence_queue.put((text, audio_bytes))
|
| 348 |
-
else:
|
| 349 |
-
# If no audio bytes, use current speaker
|
| 350 |
-
self.sentence_queue.put((text, None))
|
| 351 |
-
|
| 352 |
except Exception as e:
|
| 353 |
-
|
| 354 |
|
| 355 |
def process_sentence_queue(self):
|
| 356 |
"""Process sentences in the queue for speaker detection"""
|
| 357 |
while self.is_running:
|
| 358 |
try:
|
| 359 |
-
text,
|
| 360 |
|
| 361 |
-
|
|
|
|
| 362 |
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
# Extract embedding
|
| 369 |
-
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
|
| 370 |
-
if embedding is not None:
|
| 371 |
-
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
|
| 372 |
|
| 373 |
-
#
|
| 374 |
-
|
| 375 |
-
self.
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
except queue.Empty:
|
| 379 |
continue
|
| 380 |
except Exception as e:
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
def update_conversation_display(self):
|
| 384 |
-
"""Update the conversation display"""
|
| 385 |
-
try:
|
| 386 |
-
sentences_with_style = []
|
| 387 |
-
|
| 388 |
-
for sentence_text, speaker_id in self.full_sentences:
|
| 389 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 390 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
| 391 |
-
sentences_with_style.append(
|
| 392 |
-
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
|
| 393 |
-
f'<span style="color:#333333;">{sentence_text}</span>'
|
| 394 |
-
)
|
| 395 |
-
|
| 396 |
-
# Add current transcription if available
|
| 397 |
-
if self.last_transcription:
|
| 398 |
-
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
|
| 399 |
-
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
|
| 400 |
-
sentences_with_style.append(
|
| 401 |
-
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
|
| 402 |
-
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
|
| 403 |
-
)
|
| 404 |
-
|
| 405 |
-
if sentences_with_style:
|
| 406 |
-
self.current_conversation = "<br><br>".join(sentences_with_style)
|
| 407 |
-
else:
|
| 408 |
-
self.current_conversation = "<i>Waiting for speech input...</i>"
|
| 409 |
-
|
| 410 |
-
except Exception as e:
|
| 411 |
-
logger.error(f"Error updating conversation display: {e}")
|
| 412 |
-
self.current_conversation = f"<i>Error: {str(e)}</i>"
|
| 413 |
|
| 414 |
def start_recording(self):
|
| 415 |
"""Start the recording and transcription process"""
|
|
@@ -417,10 +392,10 @@ class RealtimeSpeakerDiarization:
|
|
| 417 |
return "Please initialize models first!"
|
| 418 |
|
| 419 |
try:
|
| 420 |
-
# Setup recorder configuration
|
| 421 |
recorder_config = {
|
| 422 |
'spinner': False,
|
| 423 |
-
'use_microphone': False, #
|
| 424 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 425 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 426 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
@@ -430,28 +405,29 @@ class RealtimeSpeakerDiarization:
|
|
| 430 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 431 |
'min_gap_between_recordings': 0,
|
| 432 |
'enable_realtime_transcription': True,
|
| 433 |
-
'realtime_processing_pause': 0
|
| 434 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 435 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 436 |
'beam_size': FINAL_BEAM_SIZE,
|
| 437 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
|
|
|
| 438 |
'sample_rate': SAMPLE_RATE,
|
| 439 |
}
|
| 440 |
|
| 441 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 442 |
|
| 443 |
-
# Start processing
|
| 444 |
self.is_running = True
|
| 445 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 446 |
self.sentence_thread.start()
|
| 447 |
|
|
|
|
| 448 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 449 |
self.transcription_thread.start()
|
| 450 |
|
| 451 |
-
return "Recording started successfully!"
|
| 452 |
|
| 453 |
except Exception as e:
|
| 454 |
-
logger.error(f"Error starting recording: {e}")
|
| 455 |
return f"Error starting recording: {e}"
|
| 456 |
|
| 457 |
def run_transcription(self):
|
|
@@ -460,7 +436,7 @@ class RealtimeSpeakerDiarization:
|
|
| 460 |
while self.is_running:
|
| 461 |
self.recorder.text(self.process_final_text)
|
| 462 |
except Exception as e:
|
| 463 |
-
|
| 464 |
|
| 465 |
def stop_recording(self):
|
| 466 |
"""Stop the recording process"""
|
|
@@ -471,10 +447,12 @@ class RealtimeSpeakerDiarization:
|
|
| 471 |
|
| 472 |
def clear_conversation(self):
|
| 473 |
"""Clear all conversation data"""
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
|
|
|
|
|
|
| 478 |
|
| 479 |
if self.speaker_detector:
|
| 480 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -497,8 +475,36 @@ class RealtimeSpeakerDiarization:
|
|
| 497 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 498 |
|
| 499 |
def get_formatted_conversation(self):
|
| 500 |
-
"""Get the formatted conversation"""
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
def get_status_info(self):
|
| 504 |
"""Get current status information"""
|
|
@@ -514,476 +520,689 @@ class RealtimeSpeakerDiarization:
|
|
| 514 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 515 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 516 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
| 517 |
-
f"**Segments Processed:** {status['segment_counter']}",
|
| 518 |
"",
|
| 519 |
-
"**Speaker
|
| 520 |
]
|
| 521 |
|
| 522 |
for i in range(status['max_speakers']):
|
| 523 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 524 |
-
|
| 525 |
-
active = "🟢" if count > 0 else "⚫"
|
| 526 |
-
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments")
|
| 527 |
|
| 528 |
return "\n".join(status_lines)
|
| 529 |
|
| 530 |
except Exception as e:
|
| 531 |
return f"Error getting status: {e}"
|
| 532 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 534 |
"""Process audio chunk from FastRTC input"""
|
| 535 |
-
if not self.is_running or self.
|
| 536 |
return
|
| 537 |
|
| 538 |
try:
|
| 539 |
-
#
|
| 540 |
-
if
|
| 541 |
-
if audio_data
|
| 542 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
else:
|
| 544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
-
#
|
| 547 |
-
|
| 548 |
-
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 553 |
|
| 554 |
-
|
| 555 |
-
|
|
|
|
|
|
|
| 556 |
|
| 557 |
-
#
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
except Exception as e:
|
| 564 |
-
|
|
|
|
|
|
|
| 565 |
|
|
|
|
| 566 |
|
| 567 |
-
# FastRTC Audio Handler
|
| 568 |
class DiarizationHandler(AsyncStreamHandler):
|
| 569 |
def __init__(self, diarization_system):
|
| 570 |
super().__init__()
|
| 571 |
self.diarization_system = diarization_system
|
| 572 |
-
self.
|
| 573 |
-
self.
|
|
|
|
| 574 |
|
| 575 |
def copy(self):
|
| 576 |
"""Return a fresh handler for each new stream connection"""
|
| 577 |
return DiarizationHandler(self.diarization_system)
|
| 578 |
|
| 579 |
async def emit(self):
|
| 580 |
-
"""Not used - we only receive audio"""
|
| 581 |
return None
|
| 582 |
|
| 583 |
async def receive(self, frame):
|
| 584 |
-
"""Receive audio data from FastRTC"""
|
| 585 |
try:
|
| 586 |
if not self.diarization_system.is_running:
|
| 587 |
return
|
| 588 |
|
| 589 |
-
# Extract audio data
|
| 590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
|
| 592 |
-
# Convert to numpy array
|
| 593 |
if isinstance(audio_data, bytes):
|
| 594 |
-
|
|
|
|
|
|
|
|
|
|
| 595 |
elif isinstance(audio_data, (list, tuple)):
|
| 596 |
audio_array = np.array(audio_data, dtype=np.float32)
|
|
|
|
|
|
|
| 597 |
else:
|
| 598 |
-
|
|
|
|
| 599 |
|
| 600 |
-
# Ensure
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
if len(audio_array.shape) > 1:
|
| 602 |
audio_array = audio_array.flatten()
|
| 603 |
|
| 604 |
-
#
|
| 605 |
-
self.
|
| 606 |
|
| 607 |
-
# Process
|
| 608 |
-
|
| 609 |
-
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
| 610 |
-
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
| 611 |
-
|
| 612 |
-
# Process asynchronously
|
| 613 |
-
await self.process_audio_async(chunk)
|
| 614 |
|
| 615 |
except Exception as e:
|
| 616 |
-
|
|
|
|
|
|
|
| 617 |
|
| 618 |
-
async def process_audio_async(self, audio_data):
|
| 619 |
"""Process audio data asynchronously"""
|
| 620 |
try:
|
|
|
|
| 621 |
loop = asyncio.get_event_loop()
|
| 622 |
await loop.run_in_executor(
|
| 623 |
None,
|
| 624 |
self.diarization_system.process_audio_chunk,
|
| 625 |
audio_data,
|
| 626 |
-
|
| 627 |
)
|
| 628 |
except Exception as e:
|
| 629 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
|
| 632 |
# Global instances
|
| 633 |
-
diarization_system = RealtimeSpeakerDiarization
|
| 634 |
audio_handler = None
|
| 635 |
|
|
|
|
| 636 |
def initialize_system():
|
| 637 |
"""Initialize the diarization system"""
|
| 638 |
-
global
|
| 639 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
success = diarization_system.initialize_models()
|
| 641 |
if success:
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
return "✅ System initialized successfully!"
|
| 645 |
else:
|
| 646 |
-
return "❌ Failed to initialize system.
|
| 647 |
except Exception as e:
|
| 648 |
-
|
| 649 |
return f"❌ Initialization error: {str(e)}"
|
| 650 |
|
|
|
|
| 651 |
def start_recording():
|
| 652 |
"""Start recording and transcription"""
|
| 653 |
try:
|
|
|
|
|
|
|
| 654 |
result = diarization_system.start_recording()
|
| 655 |
-
return result
|
| 656 |
except Exception as e:
|
| 657 |
return f"❌ Failed to start recording: {str(e)}"
|
| 658 |
|
| 659 |
-
def on_start():
|
| 660 |
-
result = start_recording()
|
| 661 |
-
return result, gr.update(interactive=False), gr.update(interactive=True)
|
| 662 |
|
| 663 |
def stop_recording():
|
| 664 |
"""Stop recording and transcription"""
|
| 665 |
try:
|
|
|
|
|
|
|
| 666 |
result = diarization_system.stop_recording()
|
| 667 |
return f"⏹️ {result}"
|
| 668 |
except Exception as e:
|
| 669 |
return f"❌ Failed to stop recording: {str(e)}"
|
| 670 |
|
|
|
|
| 671 |
def clear_conversation():
|
| 672 |
"""Clear the conversation"""
|
| 673 |
try:
|
|
|
|
|
|
|
| 674 |
result = diarization_system.clear_conversation()
|
| 675 |
return f"🗑️ {result}"
|
| 676 |
except Exception as e:
|
| 677 |
return f"❌ Failed to clear conversation: {str(e)}"
|
| 678 |
|
|
|
|
| 679 |
def update_settings(threshold, max_speakers):
|
| 680 |
"""Update system settings"""
|
| 681 |
try:
|
|
|
|
|
|
|
| 682 |
result = diarization_system.update_settings(threshold, max_speakers)
|
| 683 |
return f"⚙️ {result}"
|
| 684 |
except Exception as e:
|
| 685 |
return f"❌ Failed to update settings: {str(e)}"
|
| 686 |
|
|
|
|
| 687 |
def get_conversation():
|
| 688 |
"""Get the current conversation"""
|
| 689 |
try:
|
|
|
|
|
|
|
| 690 |
return diarization_system.get_formatted_conversation()
|
| 691 |
except Exception as e:
|
| 692 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
| 693 |
|
|
|
|
| 694 |
def get_status():
|
| 695 |
"""Get system status"""
|
| 696 |
try:
|
|
|
|
|
|
|
| 697 |
return diarization_system.get_status_info()
|
| 698 |
except Exception as e:
|
| 699 |
return f"Error getting status: {str(e)}"
|
| 700 |
|
|
|
|
| 701 |
# Create Gradio interface
|
| 702 |
def create_interface():
|
| 703 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
| 704 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
| 705 |
-
gr.Markdown("
|
| 706 |
|
| 707 |
with gr.Row():
|
| 708 |
with gr.Column(scale=2):
|
| 709 |
-
#
|
| 710 |
-
audio_component = gr.Audio(
|
| 711 |
-
label="Audio Input",
|
| 712 |
-
sources=["microphone"],
|
| 713 |
-
streaming=True
|
| 714 |
-
)
|
| 715 |
-
|
| 716 |
-
# Conversation display
|
| 717 |
conversation_output = gr.HTML(
|
| 718 |
-
value="<div style='padding: 20px; background: #
|
| 719 |
-
label="Live Conversation"
|
|
|
|
| 720 |
)
|
| 721 |
|
| 722 |
# Control buttons
|
| 723 |
with gr.Row():
|
| 724 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 725 |
-
start_btn = gr.Button("🎙️ Start", variant="primary", size="lg", interactive=False)
|
| 726 |
-
stop_btn = gr.Button("⏹️ Stop", variant="stop", size="lg", interactive=False)
|
| 727 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
| 728 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
# Status display
|
| 730 |
status_output = gr.Textbox(
|
| 731 |
label="System Status",
|
| 732 |
-
value="
|
| 733 |
-
lines=
|
| 734 |
-
interactive=False
|
|
|
|
| 735 |
)
|
| 736 |
|
| 737 |
with gr.Column(scale=1):
|
| 738 |
-
# Settings
|
| 739 |
gr.Markdown("## ⚙️ Settings")
|
| 740 |
|
| 741 |
threshold_slider = gr.Slider(
|
| 742 |
-
minimum=0.
|
| 743 |
-
maximum=0.
|
| 744 |
step=0.05,
|
| 745 |
-
value=DEFAULT_CHANGE_THRESHOLD
|
| 746 |
label="Speaker Change Sensitivity",
|
| 747 |
-
info="Lower = more sensitive"
|
| 748 |
)
|
| 749 |
|
| 750 |
max_speakers_slider = gr.Slider(
|
| 751 |
minimum=2,
|
| 752 |
-
maximum=ABSOLUTE_MAX_SPEAKERS
|
| 753 |
step=1,
|
| 754 |
-
value=DEFAULT_MAX_SPEAKERS
|
| 755 |
-
label="Maximum Speakers"
|
| 756 |
)
|
| 757 |
|
| 758 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 759 |
|
| 760 |
# Instructions
|
|
|
|
| 761 |
gr.Markdown("""
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
## 🎨 Speaker Colors
|
| 769 |
-
- 🔴 Speaker 1 (Red)
|
| 770 |
-
- 🟢 Speaker 2 (Teal)
|
| 771 |
-
- 🔵 Speaker 3 (Blue)
|
| 772 |
-
- 🟡 Speaker 4 (Green)
|
| 773 |
-
- 🟣 Speaker 5 (Yellow)
|
| 774 |
-
- 🟤 Speaker 6 (Plum)
|
| 775 |
-
- 🟫 Speaker 7 (Mint)
|
| 776 |
-
- 🟨 Speaker 8 (Gold)
|
| 777 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 778 |
|
| 779 |
# Event handlers
|
| 780 |
def on_initialize():
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
|
| 787 |
def on_start():
|
| 788 |
-
|
| 789 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 790 |
|
| 791 |
def on_stop():
|
| 792 |
-
|
| 793 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
|
| 795 |
def on_clear():
|
| 796 |
-
|
| 797 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
|
| 799 |
def on_update_settings(threshold, max_speakers):
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
def refresh_status():
|
| 807 |
-
return get_status()
|
| 808 |
|
| 809 |
-
#
|
| 810 |
init_btn.click(
|
| 811 |
-
|
| 812 |
-
outputs=[status_output, start_btn,
|
| 813 |
)
|
| 814 |
|
| 815 |
start_btn.click(
|
| 816 |
-
|
| 817 |
outputs=[status_output, start_btn, stop_btn]
|
| 818 |
)
|
| 819 |
|
| 820 |
stop_btn.click(
|
| 821 |
-
|
| 822 |
outputs=[status_output, start_btn, stop_btn]
|
| 823 |
)
|
| 824 |
|
| 825 |
clear_btn.click(
|
| 826 |
-
|
| 827 |
-
outputs=[status_output]
|
| 828 |
)
|
| 829 |
|
| 830 |
-
|
| 831 |
-
|
| 832 |
inputs=[threshold_slider, max_speakers_slider],
|
| 833 |
outputs=[status_output]
|
| 834 |
)
|
| 835 |
|
| 836 |
-
# Auto-refresh
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
status_timer = gr.Timer(2)
|
| 842 |
-
status_timer.tick(refresh_status, outputs=[status_output])
|
| 843 |
-
|
| 844 |
-
# Process audio from Gradio component
|
| 845 |
-
def process_audio_input(audio_data):
|
| 846 |
-
if audio_data is not None and diarization_system.is_running:
|
| 847 |
-
# Extract audio data
|
| 848 |
-
if isinstance(audio_data, tuple) and len(audio_data) >= 2:
|
| 849 |
-
sample_rate, audio_array = audio_data[0], audio_data[1]
|
| 850 |
-
diarization_system.process_audio_chunk(audio_array, sample_rate)
|
| 851 |
-
return get_conversation()
|
| 852 |
-
|
| 853 |
-
# Connect audio component to processing function
|
| 854 |
-
audio_component.stream(
|
| 855 |
-
fn=process_audio_input,
|
| 856 |
-
outputs=[conversation_output]
|
| 857 |
)
|
| 858 |
-
|
| 859 |
return interface
|
| 860 |
|
| 861 |
|
| 862 |
-
# FastAPI setup for
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
|
|
|
| 869 |
|
| 870 |
-
|
| 871 |
-
|
| 872 |
|
| 873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 875 |
|
| 876 |
-
|
| 877 |
-
|
|
|
|
| 878 |
|
| 879 |
-
|
| 880 |
-
|
| 881 |
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
# Initialize with placeholder handler
|
| 886 |
-
stream = Stream(handler=DefaultHandler(), modality="audio", mode="send-receive")
|
| 887 |
-
stream.mount(app)
|
| 888 |
-
|
| 889 |
-
@app.get("/")
|
| 890 |
-
async def root():
|
| 891 |
-
return {"message": "Real-time Speaker Diarization API"}
|
| 892 |
-
|
| 893 |
-
@app.get("/health")
|
| 894 |
-
async def health_check():
|
| 895 |
-
return {"status": "healthy", "system_running": diarization_system.is_running}
|
| 896 |
-
|
| 897 |
-
@app.post("/initialize")
|
| 898 |
-
async def api_initialize():
|
| 899 |
-
result = initialize_system()
|
| 900 |
-
return {"result": result, "success": "✅" in result}
|
| 901 |
-
|
| 902 |
-
@app.post("/start")
|
| 903 |
-
async def api_start():
|
| 904 |
-
result = start_recording()
|
| 905 |
-
return {"result": result, "success": "🎙️" in result}
|
| 906 |
-
|
| 907 |
-
@app.post("/stop")
|
| 908 |
-
async def api_stop():
|
| 909 |
-
result = stop_recording()
|
| 910 |
-
return {"result": result, "success": "⏹️" in result}
|
| 911 |
-
|
| 912 |
-
@app.post("/clear")
|
| 913 |
-
async def api_clear():
|
| 914 |
-
result = clear_conversation()
|
| 915 |
-
return {"result": result}
|
| 916 |
-
|
| 917 |
-
@app.get("/conversation")
|
| 918 |
-
async def api_get_conversation():
|
| 919 |
-
return {"conversation": get_conversation()}
|
| 920 |
-
|
| 921 |
-
@app.get("/status")
|
| 922 |
-
async def api_get_status():
|
| 923 |
-
return {"status": get_status()}
|
| 924 |
-
|
| 925 |
-
@app.post("/settings")
|
| 926 |
-
async def api_update_settings(threshold: float, max_speakers: int):
|
| 927 |
-
result = update_settings(threshold, max_speakers)
|
| 928 |
-
return {"result": result}
|
| 929 |
-
|
| 930 |
-
# Main execution
|
| 931 |
-
if __name__ == "__main__":
|
| 932 |
-
import argparse
|
| 933 |
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
help="Run mode: gradio interface, API only, or both")
|
| 937 |
-
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to")
|
| 938 |
-
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
|
| 939 |
-
parser.add_argument("--api-port", type=int, default=8000, help="API port (when running both)")
|
| 940 |
|
| 941 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 942 |
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 946 |
interface.launch(
|
| 947 |
-
server_name=
|
| 948 |
-
server_port=
|
| 949 |
share=True,
|
| 950 |
-
show_error=True
|
|
|
|
| 951 |
)
|
| 952 |
-
|
| 953 |
-
elif args.mode == "api":
|
| 954 |
-
# Run FastAPI only
|
| 955 |
-
uvicorn.run(
|
| 956 |
-
app,
|
| 957 |
-
host=args.host,
|
| 958 |
-
port=args.port,
|
| 959 |
-
log_level="info"
|
| 960 |
-
)
|
| 961 |
-
|
| 962 |
-
elif args.mode == "both":
|
| 963 |
-
# Run both Gradio and FastAPI
|
| 964 |
-
import multiprocessing
|
| 965 |
-
import threading
|
| 966 |
|
| 967 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 968 |
interface = create_interface()
|
| 969 |
interface.launch(
|
| 970 |
-
server_name=
|
| 971 |
-
server_port=
|
| 972 |
-
share=
|
| 973 |
-
show_error=True
|
| 974 |
)
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
api_thread = threading.Thread(target=run_fastapi, daemon=True)
|
| 986 |
-
api_thread.start()
|
| 987 |
-
|
| 988 |
-
# Start Gradio in main thread
|
| 989 |
-
run_gradio()
|
|
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
+
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
|
| 14 |
import json
|
| 15 |
+
import io
|
| 16 |
+
import wave
|
| 17 |
import asyncio
|
| 18 |
import uvicorn
|
| 19 |
+
import socket
|
| 20 |
from queue import Queue
|
| 21 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Simplified configuration parameters
|
| 23 |
SILENCE_THRESHS = [0, 0.4]
|
| 24 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
|
|
| 32 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
| 33 |
|
| 34 |
# Speaker change detection parameters
|
| 35 |
+
DEFAULT_CHANGE_THRESHOLD = 0.7
|
| 36 |
EMBEDDING_HISTORY_SIZE = 5
|
| 37 |
+
MIN_SEGMENT_DURATION = 1.0
|
| 38 |
DEFAULT_MAX_SPEAKERS = 4
|
| 39 |
+
ABSOLUTE_MAX_SPEAKERS = 10
|
| 40 |
|
| 41 |
# Global variables
|
| 42 |
+
FAST_SENTENCE_END = True
|
| 43 |
SAMPLE_RATE = 16000
|
| 44 |
+
BUFFER_SIZE = 512
|
| 45 |
CHANNELS = 1
|
| 46 |
|
| 47 |
+
# Speaker colors
|
| 48 |
SPEAKER_COLORS = [
|
| 49 |
+
"#FFFF00", # Yellow
|
| 50 |
+
"#FF0000", # Red
|
| 51 |
+
"#00FF00", # Green
|
| 52 |
+
"#00FFFF", # Cyan
|
| 53 |
+
"#FF00FF", # Magenta
|
| 54 |
+
"#0000FF", # Blue
|
| 55 |
+
"#FF8000", # Orange
|
| 56 |
+
"#00FF80", # Spring Green
|
| 57 |
+
"#8000FF", # Purple
|
| 58 |
+
"#FFFFFF", # White
|
| 59 |
]
|
| 60 |
|
| 61 |
SPEAKER_COLOR_NAMES = [
|
| 62 |
+
"Yellow", "Red", "Green", "Cyan", "Magenta",
|
| 63 |
+
"Blue", "Orange", "Spring Green", "Purple", "White"
|
| 64 |
]
|
| 65 |
|
| 66 |
|
|
|
|
| 74 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 75 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 76 |
|
| 77 |
+
def _download_model(self):
|
| 78 |
+
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 79 |
+
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 80 |
+
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 81 |
+
|
| 82 |
+
if not os.path.exists(model_path):
|
| 83 |
+
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 84 |
+
urllib.request.urlretrieve(model_url, model_path)
|
| 85 |
+
|
| 86 |
+
return model_path
|
| 87 |
+
|
| 88 |
def load_model(self):
|
| 89 |
"""Load the ECAPA-TDNN model"""
|
| 90 |
try:
|
| 91 |
from speechbrain.pretrained import EncoderClassifier
|
| 92 |
|
| 93 |
+
model_path = self._download_model()
|
| 94 |
+
|
| 95 |
self.model = EncoderClassifier.from_hparams(
|
| 96 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 97 |
savedir=self.cache_dir,
|
|
|
|
| 99 |
)
|
| 100 |
|
| 101 |
self.model_loaded = True
|
|
|
|
| 102 |
return True
|
| 103 |
except Exception as e:
|
| 104 |
+
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 105 |
return False
|
| 106 |
|
| 107 |
def embed_utterance(self, audio, sr=16000):
|
|
|
|
| 111 |
|
| 112 |
try:
|
| 113 |
if isinstance(audio, np.ndarray):
|
| 114 |
+
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
else:
|
| 116 |
waveform = audio.unsqueeze(0)
|
| 117 |
|
|
|
|
| 118 |
if sr != 16000:
|
| 119 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 120 |
|
|
|
|
| 123 |
|
| 124 |
return embedding.squeeze().cpu().numpy()
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"Error extracting embedding: {e}")
|
| 127 |
return np.zeros(self.embedding_dim)
|
| 128 |
|
| 129 |
|
|
|
|
| 131 |
"""Processes audio data to extract speaker embeddings"""
|
| 132 |
def __init__(self, encoder):
|
| 133 |
self.encoder = encoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
def extract_embedding(self, audio_int16):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
try:
|
| 137 |
+
float_audio = audio_int16.astype(np.float32) / 32768.0
|
|
|
|
| 138 |
|
| 139 |
+
if np.abs(float_audio).max() > 1.0:
|
| 140 |
+
float_audio = float_audio / np.abs(float_audio).max()
|
| 141 |
+
|
| 142 |
+
embedding = self.encoder.embed_utterance(float_audio)
|
|
|
|
| 143 |
|
|
|
|
| 144 |
return embedding
|
| 145 |
except Exception as e:
|
| 146 |
+
print(f"Embedding extraction error: {e}")
|
| 147 |
+
return np.zeros(self.encoder.embedding_dim)
|
| 148 |
|
| 149 |
|
| 150 |
class SpeakerChangeDetector:
|
| 151 |
+
"""Speaker change detector that supports a configurable number of speakers"""
|
| 152 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 153 |
self.embedding_dim = embedding_dim
|
| 154 |
self.change_threshold = change_threshold
|
| 155 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 156 |
self.current_speaker = 0
|
| 157 |
+
self.previous_embeddings = []
|
|
|
|
| 158 |
self.last_change_time = time.time()
|
| 159 |
+
self.mean_embeddings = [None] * self.max_speakers
|
| 160 |
+
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
| 161 |
+
self.last_similarity = 0.0
|
| 162 |
self.active_speakers = set([0])
|
|
|
|
| 163 |
|
| 164 |
def set_max_speakers(self, max_speakers):
|
| 165 |
"""Update the maximum number of speakers"""
|
| 166 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 167 |
|
| 168 |
if new_max < self.max_speakers:
|
|
|
|
| 169 |
for speaker_id in list(self.active_speakers):
|
| 170 |
if speaker_id >= new_max:
|
| 171 |
self.active_speakers.discard(speaker_id)
|
|
|
|
| 173 |
if self.current_speaker >= new_max:
|
| 174 |
self.current_speaker = 0
|
| 175 |
|
|
|
|
| 176 |
if new_max > self.max_speakers:
|
| 177 |
+
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
|
| 178 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
|
|
|
| 179 |
else:
|
| 180 |
+
self.mean_embeddings = self.mean_embeddings[:new_max]
|
| 181 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
|
|
|
| 182 |
|
| 183 |
self.max_speakers = new_max
|
| 184 |
|
| 185 |
def set_change_threshold(self, threshold):
|
| 186 |
"""Update the threshold for detecting speaker changes"""
|
| 187 |
+
self.change_threshold = max(0.1, min(threshold, 0.99))
|
| 188 |
|
| 189 |
def add_embedding(self, embedding, timestamp=None):
|
| 190 |
+
"""Add a new embedding and check if there's a speaker change"""
|
| 191 |
current_time = timestamp or time.time()
|
| 192 |
+
|
| 193 |
+
if not self.previous_embeddings:
|
| 194 |
+
self.previous_embeddings.append(embedding)
|
| 195 |
+
self.speaker_embeddings[self.current_speaker].append(embedding)
|
| 196 |
+
if self.mean_embeddings[self.current_speaker] is None:
|
| 197 |
+
self.mean_embeddings[self.current_speaker] = embedding.copy()
|
| 198 |
+
return self.current_speaker, 1.0
|
| 199 |
+
|
| 200 |
+
current_mean = self.mean_embeddings[self.current_speaker]
|
| 201 |
+
if current_mean is not None:
|
| 202 |
+
similarity = 1.0 - cosine(embedding, current_mean)
|
|
|
|
|
|
|
| 203 |
else:
|
| 204 |
+
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
|
| 205 |
|
| 206 |
self.last_similarity = similarity
|
| 207 |
|
|
|
|
| 208 |
time_since_last_change = current_time - self.last_change_time
|
| 209 |
+
is_speaker_change = False
|
| 210 |
|
| 211 |
+
if time_since_last_change >= MIN_SEGMENT_DURATION:
|
| 212 |
+
if similarity < self.change_threshold:
|
| 213 |
+
best_speaker = self.current_speaker
|
| 214 |
+
best_similarity = similarity
|
| 215 |
+
|
| 216 |
+
for speaker_id in range(self.max_speakers):
|
| 217 |
+
if speaker_id == self.current_speaker:
|
| 218 |
+
continue
|
| 219 |
+
|
| 220 |
+
speaker_mean = self.mean_embeddings[speaker_id]
|
| 221 |
|
| 222 |
+
if speaker_mean is not None:
|
| 223 |
+
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
|
| 224 |
+
|
| 225 |
+
if speaker_similarity > best_similarity:
|
| 226 |
+
best_similarity = speaker_similarity
|
| 227 |
+
best_speaker = speaker_id
|
| 228 |
+
|
| 229 |
+
if best_speaker != self.current_speaker:
|
| 230 |
+
is_speaker_change = True
|
| 231 |
+
self.current_speaker = best_speaker
|
| 232 |
+
elif len(self.active_speakers) < self.max_speakers:
|
| 233 |
+
for new_id in range(self.max_speakers):
|
| 234 |
+
if new_id not in self.active_speakers:
|
| 235 |
+
is_speaker_change = True
|
| 236 |
+
self.current_speaker = new_id
|
| 237 |
+
self.active_speakers.add(new_id)
|
| 238 |
+
break
|
| 239 |
+
|
| 240 |
+
if is_speaker_change:
|
| 241 |
+
self.last_change_time = current_time
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
self.previous_embeddings.append(embedding)
|
| 244 |
+
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
|
| 245 |
+
self.previous_embeddings.pop(0)
|
|
|
|
| 246 |
|
| 247 |
+
self.speaker_embeddings[self.current_speaker].append(embedding)
|
| 248 |
+
self.active_speakers.add(self.current_speaker)
|
| 249 |
+
|
| 250 |
+
if len(self.speaker_embeddings[self.current_speaker]) > 30:
|
| 251 |
+
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
|
| 252 |
+
|
| 253 |
if self.speaker_embeddings[self.current_speaker]:
|
| 254 |
+
self.mean_embeddings[self.current_speaker] = np.mean(
|
| 255 |
self.speaker_embeddings[self.current_speaker], axis=0
|
| 256 |
)
|
| 257 |
|
|
|
|
| 264 |
return "#FFFFFF"
|
| 265 |
|
| 266 |
def get_status_info(self):
|
| 267 |
+
"""Return status information about the speaker change detector"""
|
| 268 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 269 |
|
| 270 |
return {
|
|
|
|
| 273 |
"active_speakers": len(self.active_speakers),
|
| 274 |
"max_speakers": self.max_speakers,
|
| 275 |
"last_similarity": self.last_similarity,
|
| 276 |
+
"threshold": self.change_threshold
|
|
|
|
| 277 |
}
|
| 278 |
|
| 279 |
|
|
|
|
| 287 |
self.full_sentences = []
|
| 288 |
self.sentence_speakers = []
|
| 289 |
self.pending_sentences = []
|
| 290 |
+
self.displayed_text = ""
|
| 291 |
+
self.last_realtime_text = ""
|
| 292 |
self.is_running = False
|
| 293 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 295 |
+
self.current_conversation = ""
|
| 296 |
+
self.audio_buffer = []
|
| 297 |
|
| 298 |
def initialize_models(self):
|
| 299 |
"""Initialize the speaker encoder model"""
|
| 300 |
try:
|
| 301 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 302 |
+
print(f"Using device: {device_str}")
|
| 303 |
|
| 304 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 305 |
success = self.encoder.load_model()
|
|
|
|
| 311 |
change_threshold=self.change_threshold,
|
| 312 |
max_speakers=self.max_speakers
|
| 313 |
)
|
| 314 |
+
print("ECAPA-TDNN model loaded successfully!")
|
| 315 |
return True
|
| 316 |
else:
|
| 317 |
+
print("Failed to load ECAPA-TDNN model")
|
| 318 |
return False
|
| 319 |
except Exception as e:
|
| 320 |
+
print(f"Model initialization error: {e}")
|
| 321 |
return False
|
| 322 |
|
| 323 |
def live_text_detected(self, text):
|
| 324 |
"""Callback for real-time transcription updates"""
|
| 325 |
+
text = text.strip()
|
| 326 |
+
if text:
|
| 327 |
+
sentence_delimiters = '.?!。'
|
| 328 |
+
prob_sentence_end = (
|
| 329 |
+
len(self.last_realtime_text) > 0
|
| 330 |
+
and text[-1] in sentence_delimiters
|
| 331 |
+
and self.last_realtime_text[-1] in sentence_delimiters
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
self.last_realtime_text = text
|
| 335 |
+
|
| 336 |
+
if prob_sentence_end and FAST_SENTENCE_END:
|
| 337 |
+
self.recorder.stop()
|
| 338 |
+
elif prob_sentence_end:
|
| 339 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 340 |
+
else:
|
| 341 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
| 342 |
|
| 343 |
def process_final_text(self, text):
|
| 344 |
"""Process final transcribed text with speaker embedding"""
|
| 345 |
text = text.strip()
|
| 346 |
if text:
|
| 347 |
try:
|
| 348 |
+
bytes_data = self.recorder.last_transcription_bytes
|
| 349 |
+
self.sentence_queue.put((text, bytes_data))
|
| 350 |
+
self.pending_sentences.append(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
except Exception as e:
|
| 352 |
+
print(f"Error processing final text: {e}")
|
| 353 |
|
| 354 |
def process_sentence_queue(self):
|
| 355 |
"""Process sentences in the queue for speaker detection"""
|
| 356 |
while self.is_running:
|
| 357 |
try:
|
| 358 |
+
text, bytes_data = self.sentence_queue.get(timeout=1)
|
| 359 |
|
| 360 |
+
# Convert audio data to int16
|
| 361 |
+
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
|
| 362 |
|
| 363 |
+
# Extract speaker embedding
|
| 364 |
+
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
| 365 |
+
|
| 366 |
+
# Store sentence and embedding
|
| 367 |
+
self.full_sentences.append((text, speaker_embedding))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
+
# Fill in missing speaker assignments
|
| 370 |
+
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
| 371 |
+
self.sentence_speakers.append(0)
|
| 372 |
+
|
| 373 |
+
# Detect speaker changes
|
| 374 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
| 375 |
+
self.sentence_speakers.append(speaker_id)
|
| 376 |
+
|
| 377 |
+
# Remove from pending
|
| 378 |
+
if text in self.pending_sentences:
|
| 379 |
+
self.pending_sentences.remove(text)
|
| 380 |
+
|
| 381 |
+
# Update conversation display
|
| 382 |
+
self.current_conversation = self.get_formatted_conversation()
|
| 383 |
|
| 384 |
except queue.Empty:
|
| 385 |
continue
|
| 386 |
except Exception as e:
|
| 387 |
+
print(f"Error processing sentence: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
def start_recording(self):
|
| 390 |
"""Start the recording and transcription process"""
|
|
|
|
| 392 |
return "Please initialize models first!"
|
| 393 |
|
| 394 |
try:
|
| 395 |
+
# Setup recorder configuration for manual audio input
|
| 396 |
recorder_config = {
|
| 397 |
'spinner': False,
|
| 398 |
+
'use_microphone': False, # We'll feed audio manually
|
| 399 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 400 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 401 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
|
|
| 405 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 406 |
'min_gap_between_recordings': 0,
|
| 407 |
'enable_realtime_transcription': True,
|
| 408 |
+
'realtime_processing_pause': 0,
|
| 409 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 410 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 411 |
'beam_size': FINAL_BEAM_SIZE,
|
| 412 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 413 |
+
'buffer_size': BUFFER_SIZE,
|
| 414 |
'sample_rate': SAMPLE_RATE,
|
| 415 |
}
|
| 416 |
|
| 417 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 418 |
|
| 419 |
+
# Start sentence processing thread
|
| 420 |
self.is_running = True
|
| 421 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 422 |
self.sentence_thread.start()
|
| 423 |
|
| 424 |
+
# Start transcription thread
|
| 425 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 426 |
self.transcription_thread.start()
|
| 427 |
|
| 428 |
+
return "Recording started successfully! FastRTC audio input ready."
|
| 429 |
|
| 430 |
except Exception as e:
|
|
|
|
| 431 |
return f"Error starting recording: {e}"
|
| 432 |
|
| 433 |
def run_transcription(self):
|
|
|
|
| 436 |
while self.is_running:
|
| 437 |
self.recorder.text(self.process_final_text)
|
| 438 |
except Exception as e:
|
| 439 |
+
print(f"Transcription error: {e}")
|
| 440 |
|
| 441 |
def stop_recording(self):
|
| 442 |
"""Stop the recording process"""
|
|
|
|
| 447 |
|
| 448 |
def clear_conversation(self):
|
| 449 |
"""Clear all conversation data"""
|
| 450 |
+
self.full_sentences = []
|
| 451 |
+
self.sentence_speakers = []
|
| 452 |
+
self.pending_sentences = []
|
| 453 |
+
self.displayed_text = ""
|
| 454 |
+
self.last_realtime_text = ""
|
| 455 |
+
self.current_conversation = "Conversation cleared!"
|
| 456 |
|
| 457 |
if self.speaker_detector:
|
| 458 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 475 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 476 |
|
| 477 |
def get_formatted_conversation(self):
|
| 478 |
+
"""Get the formatted conversation with speaker colors"""
|
| 479 |
+
try:
|
| 480 |
+
sentences_with_style = []
|
| 481 |
+
|
| 482 |
+
# Process completed sentences
|
| 483 |
+
for i, sentence in enumerate(self.full_sentences):
|
| 484 |
+
sentence_text, _ = sentence
|
| 485 |
+
if i >= len(self.sentence_speakers):
|
| 486 |
+
color = "#FFFFFF"
|
| 487 |
+
speaker_name = "Unknown"
|
| 488 |
+
else:
|
| 489 |
+
speaker_id = self.sentence_speakers[i]
|
| 490 |
+
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 491 |
+
speaker_name = f"Speaker {speaker_id + 1}"
|
| 492 |
+
|
| 493 |
+
sentences_with_style.append(
|
| 494 |
+
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
| 495 |
+
|
| 496 |
+
# Add pending sentences
|
| 497 |
+
for pending_sentence in self.pending_sentences:
|
| 498 |
+
sentences_with_style.append(
|
| 499 |
+
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
|
| 500 |
+
|
| 501 |
+
if sentences_with_style:
|
| 502 |
+
return "<br><br>".join(sentences_with_style)
|
| 503 |
+
else:
|
| 504 |
+
return "Waiting for speech input..."
|
| 505 |
+
|
| 506 |
+
except Exception as e:
|
| 507 |
+
return f"Error formatting conversation: {e}"
|
| 508 |
|
| 509 |
def get_status_info(self):
|
| 510 |
"""Get current status information"""
|
|
|
|
| 520 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 521 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 522 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
|
|
|
| 523 |
"",
|
| 524 |
+
"**Speaker Segment Counts:**"
|
| 525 |
]
|
| 526 |
|
| 527 |
for i in range(status['max_speakers']):
|
| 528 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 529 |
+
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
|
|
|
|
|
|
|
| 530 |
|
| 531 |
return "\n".join(status_lines)
|
| 532 |
|
| 533 |
except Exception as e:
|
| 534 |
return f"Error getting status: {e}"
|
| 535 |
|
| 536 |
+
def feed_audio_data(self, audio_data):
|
| 537 |
+
"""Feed audio data to the recorder"""
|
| 538 |
+
if not self.is_running or not self.recorder:
|
| 539 |
+
return
|
| 540 |
+
|
| 541 |
+
try:
|
| 542 |
+
# Ensure audio is in the correct format (16-bit PCM)
|
| 543 |
+
if isinstance(audio_data, np.ndarray):
|
| 544 |
+
if audio_data.dtype != np.int16:
|
| 545 |
+
# Convert float to int16
|
| 546 |
+
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
|
| 547 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
| 548 |
+
else:
|
| 549 |
+
audio_data = audio_data.astype(np.int16)
|
| 550 |
+
|
| 551 |
+
# Convert to bytes
|
| 552 |
+
audio_bytes = audio_data.tobytes()
|
| 553 |
+
else:
|
| 554 |
+
audio_bytes = audio_data
|
| 555 |
+
|
| 556 |
+
# Feed to recorder
|
| 557 |
+
self.recorder.feed_audio(audio_bytes)
|
| 558 |
+
|
| 559 |
+
except Exception as e:
|
| 560 |
+
print(f"Error feeding audio data: {e}")
|
| 561 |
+
|
| 562 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 563 |
"""Process audio chunk from FastRTC input"""
|
| 564 |
+
if not self.is_running or self.recorder is None:
|
| 565 |
return
|
| 566 |
|
| 567 |
try:
|
| 568 |
+
# Convert float audio to int16 for the recorder
|
| 569 |
+
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
|
| 570 |
+
if np.max(np.abs(audio_data)) <= 1.0:
|
| 571 |
+
# Float audio is normalized to [-1, 1], convert to int16
|
| 572 |
+
audio_int16 = (audio_data * 32767).astype(np.int16)
|
| 573 |
+
else:
|
| 574 |
+
# Audio is already in higher range
|
| 575 |
+
audio_int16 = audio_data.astype(np.int16)
|
| 576 |
else:
|
| 577 |
+
audio_int16 = audio_data
|
| 578 |
+
|
| 579 |
+
# Ensure correct shape (1, N) for the recorder
|
| 580 |
+
if len(audio_int16.shape) == 1:
|
| 581 |
+
audio_int16 = np.expand_dims(audio_int16, 0)
|
| 582 |
+
|
| 583 |
+
# Resample if needed
|
| 584 |
+
if sample_rate != SAMPLE_RATE:
|
| 585 |
+
audio_int16 = self._resample_audio(audio_int16, sample_rate, SAMPLE_RATE)
|
| 586 |
+
|
| 587 |
+
# Convert to bytes for feeding to recorder
|
| 588 |
+
audio_bytes = audio_int16.tobytes()
|
| 589 |
|
| 590 |
+
# Feed to recorder
|
| 591 |
+
self.feed_audio_data(audio_bytes)
|
|
|
|
| 592 |
|
| 593 |
+
except Exception as e:
|
| 594 |
+
print(f"Error processing audio chunk: {e}")
|
|
|
|
| 595 |
|
| 596 |
+
def _resample_audio(self, audio, orig_sr, target_sr):
|
| 597 |
+
"""Resample audio to target sample rate"""
|
| 598 |
+
try:
|
| 599 |
+
import scipy.signal
|
| 600 |
|
| 601 |
+
# Get the resampling ratio
|
| 602 |
+
ratio = target_sr / orig_sr
|
| 603 |
+
|
| 604 |
+
# Calculate the new length
|
| 605 |
+
new_length = int(len(audio[0]) * ratio)
|
| 606 |
+
|
| 607 |
+
# Resample the audio
|
| 608 |
+
resampled = scipy.signal.resample(audio[0], new_length)
|
| 609 |
+
|
| 610 |
+
# Return in the same shape format
|
| 611 |
+
return np.expand_dims(resampled, 0)
|
| 612 |
except Exception as e:
|
| 613 |
+
print(f"Error resampling audio: {e}")
|
| 614 |
+
return audio
|
| 615 |
+
|
| 616 |
|
| 617 |
+
# FastRTC Audio Handler for Real-time Diarization
|
| 618 |
|
|
|
|
| 619 |
class DiarizationHandler(AsyncStreamHandler):
|
| 620 |
def __init__(self, diarization_system):
|
| 621 |
super().__init__()
|
| 622 |
self.diarization_system = diarization_system
|
| 623 |
+
self.audio_queue = Queue()
|
| 624 |
+
self.is_processing = False
|
| 625 |
+
self.sample_rate = 16000 # Default sample rate
|
| 626 |
|
| 627 |
def copy(self):
|
| 628 |
"""Return a fresh handler for each new stream connection"""
|
| 629 |
return DiarizationHandler(self.diarization_system)
|
| 630 |
|
| 631 |
async def emit(self):
|
| 632 |
+
"""Not used in this implementation - we only receive audio"""
|
| 633 |
return None
|
| 634 |
|
| 635 |
async def receive(self, frame):
|
| 636 |
+
"""Receive audio data from FastRTC and process it"""
|
| 637 |
try:
|
| 638 |
if not self.diarization_system.is_running:
|
| 639 |
return
|
| 640 |
|
| 641 |
+
# Extract audio data from frame
|
| 642 |
+
if hasattr(frame, 'data') and frame.data is not None:
|
| 643 |
+
audio_data = frame.data
|
| 644 |
+
elif hasattr(frame, 'audio') and frame.audio is not None:
|
| 645 |
+
audio_data = frame.audio
|
| 646 |
+
else:
|
| 647 |
+
audio_data = frame
|
| 648 |
|
| 649 |
+
# Convert to numpy array if needed
|
| 650 |
if isinstance(audio_data, bytes):
|
| 651 |
+
# Convert bytes to numpy array (assuming 16-bit PCM)
|
| 652 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 653 |
+
# Normalize to float32 range [-1, 1]
|
| 654 |
+
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 655 |
elif isinstance(audio_data, (list, tuple)):
|
| 656 |
audio_array = np.array(audio_data, dtype=np.float32)
|
| 657 |
+
elif isinstance(audio_data, np.ndarray):
|
| 658 |
+
audio_array = audio_data.astype(np.float32)
|
| 659 |
else:
|
| 660 |
+
print(f"Unknown audio data type: {type(audio_data)}")
|
| 661 |
+
return
|
| 662 |
|
| 663 |
+
# Ensure mono audio
|
| 664 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 665 |
+
audio_array = np.mean(audio_array, axis=1)
|
| 666 |
+
|
| 667 |
+
# Ensure 1D array
|
| 668 |
if len(audio_array.shape) > 1:
|
| 669 |
audio_array = audio_array.flatten()
|
| 670 |
|
| 671 |
+
# Get sample rate from frame if available
|
| 672 |
+
sample_rate = getattr(frame, 'sample_rate', self.sample_rate)
|
| 673 |
|
| 674 |
+
# Process audio asynchronously to avoid blocking
|
| 675 |
+
await self.process_audio_async(audio_array, sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
|
| 677 |
except Exception as e:
|
| 678 |
+
print(f"Error in FastRTC audio receive: {e}")
|
| 679 |
+
import traceback
|
| 680 |
+
traceback.print_exc()
|
| 681 |
|
| 682 |
+
async def process_audio_async(self, audio_data, sample_rate=16000):
|
| 683 |
"""Process audio data asynchronously"""
|
| 684 |
try:
|
| 685 |
+
# Run the audio processing in a thread pool to avoid blocking
|
| 686 |
loop = asyncio.get_event_loop()
|
| 687 |
await loop.run_in_executor(
|
| 688 |
None,
|
| 689 |
self.diarization_system.process_audio_chunk,
|
| 690 |
audio_data,
|
| 691 |
+
sample_rate
|
| 692 |
)
|
| 693 |
except Exception as e:
|
| 694 |
+
print(f"Error in async audio processing: {e}")
|
| 695 |
+
|
| 696 |
+
async def start_up(self) -> None:
|
| 697 |
+
"""Initialize any resources when the stream starts"""
|
| 698 |
+
print("FastRTC stream started")
|
| 699 |
+
self.is_processing = True
|
| 700 |
+
|
| 701 |
+
async def shutdown(self) -> None:
|
| 702 |
+
"""Clean up any resources when the stream ends"""
|
| 703 |
+
print("FastRTC stream shutting down")
|
| 704 |
+
self.is_processing = False
|
| 705 |
|
| 706 |
|
| 707 |
# Global instances
|
| 708 |
+
diarization_system = None # Will be initialized when RealtimeSpeakerDiarization is available
|
| 709 |
audio_handler = None
|
| 710 |
|
| 711 |
+
|
| 712 |
def initialize_system():
|
| 713 |
"""Initialize the diarization system"""
|
| 714 |
+
global audio_handler, diarization_system
|
| 715 |
try:
|
| 716 |
+
if diarization_system is None:
|
| 717 |
+
print("Error: RealtimeSpeakerDiarization not initialized")
|
| 718 |
+
return "❌ Diarization system not available. Please ensure RealtimeSpeakerDiarization is properly imported."
|
| 719 |
+
|
| 720 |
success = diarization_system.initialize_models()
|
| 721 |
if success:
|
| 722 |
+
audio_handler = DiarizationHandler(diarization_system)
|
| 723 |
+
return "✅ System initialized successfully! Models loaded and FastRTC handler ready."
|
|
|
|
| 724 |
else:
|
| 725 |
+
return "❌ Failed to initialize system. Please check the logs."
|
| 726 |
except Exception as e:
|
| 727 |
+
print(f"Initialization error: {e}")
|
| 728 |
return f"❌ Initialization error: {str(e)}"
|
| 729 |
|
| 730 |
+
|
| 731 |
def start_recording():
|
| 732 |
"""Start recording and transcription"""
|
| 733 |
try:
|
| 734 |
+
if diarization_system is None:
|
| 735 |
+
return "❌ System not initialized"
|
| 736 |
result = diarization_system.start_recording()
|
| 737 |
+
return f"🎙️ {result} - FastRTC audio streaming is active."
|
| 738 |
except Exception as e:
|
| 739 |
return f"❌ Failed to start recording: {str(e)}"
|
| 740 |
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
def stop_recording():
|
| 743 |
"""Stop recording and transcription"""
|
| 744 |
try:
|
| 745 |
+
if diarization_system is None:
|
| 746 |
+
return "❌ System not initialized"
|
| 747 |
result = diarization_system.stop_recording()
|
| 748 |
return f"⏹️ {result}"
|
| 749 |
except Exception as e:
|
| 750 |
return f"❌ Failed to stop recording: {str(e)}"
|
| 751 |
|
| 752 |
+
|
| 753 |
def clear_conversation():
|
| 754 |
"""Clear the conversation"""
|
| 755 |
try:
|
| 756 |
+
if diarization_system is None:
|
| 757 |
+
return "❌ System not initialized"
|
| 758 |
result = diarization_system.clear_conversation()
|
| 759 |
return f"🗑️ {result}"
|
| 760 |
except Exception as e:
|
| 761 |
return f"❌ Failed to clear conversation: {str(e)}"
|
| 762 |
|
| 763 |
+
|
| 764 |
def update_settings(threshold, max_speakers):
|
| 765 |
"""Update system settings"""
|
| 766 |
try:
|
| 767 |
+
if diarization_system is None:
|
| 768 |
+
return "❌ System not initialized"
|
| 769 |
result = diarization_system.update_settings(threshold, max_speakers)
|
| 770 |
return f"⚙️ {result}"
|
| 771 |
except Exception as e:
|
| 772 |
return f"❌ Failed to update settings: {str(e)}"
|
| 773 |
|
| 774 |
+
|
| 775 |
def get_conversation():
|
| 776 |
"""Get the current conversation"""
|
| 777 |
try:
|
| 778 |
+
if diarization_system is None:
|
| 779 |
+
return "<i>System not initialized</i>"
|
| 780 |
return diarization_system.get_formatted_conversation()
|
| 781 |
except Exception as e:
|
| 782 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
| 783 |
|
| 784 |
+
|
| 785 |
def get_status():
|
| 786 |
"""Get system status"""
|
| 787 |
try:
|
| 788 |
+
if diarization_system is None:
|
| 789 |
+
return "System not initialized"
|
| 790 |
return diarization_system.get_status_info()
|
| 791 |
except Exception as e:
|
| 792 |
return f"Error getting status: {str(e)}"
|
| 793 |
|
| 794 |
+
|
| 795 |
# Create Gradio interface
|
| 796 |
def create_interface():
|
| 797 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
| 798 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
| 799 |
+
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification using FastRTC for low-latency audio streaming.")
|
| 800 |
|
| 801 |
with gr.Row():
|
| 802 |
with gr.Column(scale=2):
|
| 803 |
+
# Main conversation display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 804 |
conversation_output = gr.HTML(
|
| 805 |
+
value="<div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'><i>Click 'Initialize System' to start...</i></div>",
|
| 806 |
+
label="Live Conversation",
|
| 807 |
+
elem_id="conversation_display"
|
| 808 |
)
|
| 809 |
|
| 810 |
# Control buttons
|
| 811 |
with gr.Row():
|
| 812 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 813 |
+
start_btn = gr.Button("🎙️ Start Recording", variant="primary", size="lg", interactive=False)
|
| 814 |
+
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", size="lg", interactive=False)
|
| 815 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
| 816 |
|
| 817 |
+
# FastRTC Stream Interface
|
| 818 |
+
with gr.Row():
|
| 819 |
+
gr.HTML("""
|
| 820 |
+
<div id="fastrtc-container" style="border: 2px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0;">
|
| 821 |
+
<h3>🎵 Audio Stream</h3>
|
| 822 |
+
<p>FastRTC audio stream will appear here when recording starts.</p>
|
| 823 |
+
<div id="stream-status" style="padding: 10px; background: #f8f9fa; border-radius: 5px; margin-top: 10px;">
|
| 824 |
+
Status: Waiting for initialization...
|
| 825 |
+
</div>
|
| 826 |
+
</div>
|
| 827 |
+
""")
|
| 828 |
+
|
| 829 |
# Status display
|
| 830 |
status_output = gr.Textbox(
|
| 831 |
label="System Status",
|
| 832 |
+
value="System not initialized. Please click 'Initialize System' to begin.",
|
| 833 |
+
lines=6,
|
| 834 |
+
interactive=False,
|
| 835 |
+
show_copy_button=True
|
| 836 |
)
|
| 837 |
|
| 838 |
with gr.Column(scale=1):
|
| 839 |
+
# Settings panel
|
| 840 |
gr.Markdown("## ⚙️ Settings")
|
| 841 |
|
| 842 |
threshold_slider = gr.Slider(
|
| 843 |
+
minimum=0.1,
|
| 844 |
+
maximum=0.95,
|
| 845 |
step=0.05,
|
| 846 |
+
value=0.5, # DEFAULT_CHANGE_THRESHOLD
|
| 847 |
label="Speaker Change Sensitivity",
|
| 848 |
+
info="Lower = more sensitive to speaker changes"
|
| 849 |
)
|
| 850 |
|
| 851 |
max_speakers_slider = gr.Slider(
|
| 852 |
minimum=2,
|
| 853 |
+
maximum=10, # ABSOLUTE_MAX_SPEAKERS
|
| 854 |
step=1,
|
| 855 |
+
value=4, # DEFAULT_MAX_SPEAKERS
|
| 856 |
+
label="Maximum Number of Speakers"
|
| 857 |
)
|
| 858 |
|
| 859 |
+
update_settings_btn = gr.Button("Update Settings", variant="secondary")
|
| 860 |
+
|
| 861 |
+
# Audio settings
|
| 862 |
+
gr.Markdown("## 🔊 Audio Configuration")
|
| 863 |
+
with gr.Accordion("Advanced Audio Settings", open=False):
|
| 864 |
+
gr.Markdown("""
|
| 865 |
+
**Current Configuration:**
|
| 866 |
+
- Sample Rate: 16kHz
|
| 867 |
+
- Audio Format: 16-bit PCM → Float32 (via AudioProcessor)
|
| 868 |
+
- Channels: Mono (stereo converted automatically)
|
| 869 |
+
- Buffer Size: 1024 samples for real-time processing
|
| 870 |
+
- Processing: Uses existing AudioProcessor.extract_embedding()
|
| 871 |
+
""")
|
| 872 |
|
| 873 |
# Instructions
|
| 874 |
+
gr.Markdown("## 📝 How to Use")
|
| 875 |
gr.Markdown("""
|
| 876 |
+
1. **Initialize**: Click "Initialize System" to load AI models
|
| 877 |
+
2. **Start**: Click "Start Recording" to begin processing
|
| 878 |
+
3. **Connect**: The FastRTC stream will activate automatically
|
| 879 |
+
4. **Allow Access**: Grant microphone permissions when prompted
|
| 880 |
+
5. **Speak**: Talk naturally into your microphone
|
| 881 |
+
6. **Monitor**: Watch real-time transcription with speaker colors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
""")
|
| 883 |
+
|
| 884 |
+
# Performance tips
|
| 885 |
+
with gr.Accordion("💡 Performance Tips", open=False):
|
| 886 |
+
gr.Markdown("""
|
| 887 |
+
- Use Chrome/Edge for best FastRTC performance
|
| 888 |
+
- Ensure stable internet connection
|
| 889 |
+
- Use headphones to prevent echo
|
| 890 |
+
- Position microphone 6-12 inches away
|
| 891 |
+
- Minimize background noise
|
| 892 |
+
- Allow browser microphone access
|
| 893 |
+
""")
|
| 894 |
+
|
| 895 |
+
# Speaker color legend
|
| 896 |
+
gr.Markdown("## 🎨 Speaker Colors")
|
| 897 |
+
speaker_colors = [
|
| 898 |
+
("#FF6B6B", "Red"),
|
| 899 |
+
("#4ECDC4", "Teal"),
|
| 900 |
+
("#45B7D1", "Blue"),
|
| 901 |
+
("#96CEB4", "Green"),
|
| 902 |
+
("#FFEAA7", "Yellow"),
|
| 903 |
+
("#DDA0DD", "Plum"),
|
| 904 |
+
("#98D8C8", "Mint"),
|
| 905 |
+
("#F7DC6F", "Gold")
|
| 906 |
+
]
|
| 907 |
+
|
| 908 |
+
color_html = ""
|
| 909 |
+
for i, (color, name) in enumerate(speaker_colors[:4]):
|
| 910 |
+
color_html += f'<div style="margin: 3px 0;"><span style="color:{color}; font-size: 16px; font-weight: bold;">●</span> Speaker {i+1} ({name})</div>'
|
| 911 |
+
|
| 912 |
+
gr.HTML(f"<div style='font-size: 14px;'>{color_html}</div>")
|
| 913 |
+
|
| 914 |
+
# Auto-refresh conversation and status
|
| 915 |
+
def refresh_display():
|
| 916 |
+
try:
|
| 917 |
+
conversation = get_conversation()
|
| 918 |
+
status = get_status()
|
| 919 |
+
return conversation, status
|
| 920 |
+
except Exception as e:
|
| 921 |
+
error_msg = f"Error refreshing display: {str(e)}"
|
| 922 |
+
return f"<i>{error_msg}</i>", error_msg
|
| 923 |
|
| 924 |
# Event handlers
|
| 925 |
def on_initialize():
|
| 926 |
+
try:
|
| 927 |
+
result = initialize_system()
|
| 928 |
+
success = "successfully" in result.lower()
|
| 929 |
+
|
| 930 |
+
conversation, status = refresh_display()
|
| 931 |
+
|
| 932 |
+
return (
|
| 933 |
+
result, # status_output
|
| 934 |
+
gr.update(interactive=success), # start_btn
|
| 935 |
+
gr.update(interactive=success), # clear_btn
|
| 936 |
+
conversation, # conversation_output
|
| 937 |
+
)
|
| 938 |
+
except Exception as e:
|
| 939 |
+
error_msg = f"❌ Initialization failed: {str(e)}"
|
| 940 |
+
return (
|
| 941 |
+
error_msg,
|
| 942 |
+
gr.update(interactive=False),
|
| 943 |
+
gr.update(interactive=False),
|
| 944 |
+
"<i>System not ready</i>",
|
| 945 |
+
)
|
| 946 |
|
| 947 |
def on_start():
|
| 948 |
+
try:
|
| 949 |
+
result = start_recording()
|
| 950 |
+
return (
|
| 951 |
+
result, # status_output
|
| 952 |
+
gr.update(interactive=False), # start_btn
|
| 953 |
+
gr.update(interactive=True), # stop_btn
|
| 954 |
+
)
|
| 955 |
+
except Exception as e:
|
| 956 |
+
error_msg = f"❌ Failed to start: {str(e)}"
|
| 957 |
+
return (
|
| 958 |
+
error_msg,
|
| 959 |
+
gr.update(interactive=True),
|
| 960 |
+
gr.update(interactive=False),
|
| 961 |
+
)
|
| 962 |
|
| 963 |
def on_stop():
|
| 964 |
+
try:
|
| 965 |
+
result = stop_recording()
|
| 966 |
+
return (
|
| 967 |
+
result, # status_output
|
| 968 |
+
gr.update(interactive=True), # start_btn
|
| 969 |
+
gr.update(interactive=False), # stop_btn
|
| 970 |
+
)
|
| 971 |
+
except Exception as e:
|
| 972 |
+
error_msg = f"❌ Failed to stop: {str(e)}"
|
| 973 |
+
return (
|
| 974 |
+
error_msg,
|
| 975 |
+
gr.update(interactive=False),
|
| 976 |
+
gr.update(interactive=True),
|
| 977 |
+
)
|
| 978 |
|
| 979 |
def on_clear():
|
| 980 |
+
try:
|
| 981 |
+
result = clear_conversation()
|
| 982 |
+
conversation, status = refresh_display()
|
| 983 |
+
return result, conversation
|
| 984 |
+
except Exception as e:
|
| 985 |
+
error_msg = f"❌ Failed to clear: {str(e)}"
|
| 986 |
+
return error_msg, "<i>Error clearing conversation</i>"
|
| 987 |
|
| 988 |
def on_update_settings(threshold, max_speakers):
|
| 989 |
+
try:
|
| 990 |
+
result = update_settings(threshold, max_speakers)
|
| 991 |
+
return result
|
| 992 |
+
except Exception as e:
|
| 993 |
+
return f"❌ Failed to update settings: {str(e)}"
|
|
|
|
|
|
|
|
|
|
| 994 |
|
| 995 |
+
# Connect event handlers
|
| 996 |
init_btn.click(
|
| 997 |
+
on_initialize,
|
| 998 |
+
outputs=[status_output, start_btn, clear_btn, conversation_output]
|
| 999 |
)
|
| 1000 |
|
| 1001 |
start_btn.click(
|
| 1002 |
+
on_start,
|
| 1003 |
outputs=[status_output, start_btn, stop_btn]
|
| 1004 |
)
|
| 1005 |
|
| 1006 |
stop_btn.click(
|
| 1007 |
+
on_stop,
|
| 1008 |
outputs=[status_output, start_btn, stop_btn]
|
| 1009 |
)
|
| 1010 |
|
| 1011 |
clear_btn.click(
|
| 1012 |
+
on_clear,
|
| 1013 |
+
outputs=[status_output, conversation_output]
|
| 1014 |
)
|
| 1015 |
|
| 1016 |
+
update_settings_btn.click(
|
| 1017 |
+
on_update_settings,
|
| 1018 |
inputs=[threshold_slider, max_speakers_slider],
|
| 1019 |
outputs=[status_output]
|
| 1020 |
)
|
| 1021 |
|
| 1022 |
+
# Auto-refresh every 2 seconds when active
|
| 1023 |
+
refresh_timer = gr.Timer(2.0)
|
| 1024 |
+
refresh_timer.tick(
|
| 1025 |
+
refresh_display,
|
| 1026 |
+
outputs=[conversation_output, status_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1027 |
)
|
| 1028 |
+
|
| 1029 |
return interface
|
| 1030 |
|
| 1031 |
|
| 1032 |
+
# FastAPI setup for API endpoints
|
| 1033 |
+
def create_fastapi_app():
|
| 1034 |
+
"""Create FastAPI app with API endpoints"""
|
| 1035 |
+
app = FastAPI(
|
| 1036 |
+
title="Real-time Speaker Diarization",
|
| 1037 |
+
description="Real-time speech recognition with speaker diarization using FastRTC",
|
| 1038 |
+
version="1.0.0"
|
| 1039 |
+
)
|
| 1040 |
|
| 1041 |
+
# API Routes
|
| 1042 |
+
router = APIRouter()
|
| 1043 |
|
| 1044 |
+
@router.get("/health")
|
| 1045 |
+
async def health_check():
|
| 1046 |
+
"""Health check endpoint"""
|
| 1047 |
+
return {
|
| 1048 |
+
"status": "healthy",
|
| 1049 |
+
"timestamp": time.time(),
|
| 1050 |
+
"system_initialized": diarization_system is not None and hasattr(diarization_system, 'encoder') and diarization_system.encoder is not None,
|
| 1051 |
+
"recording_active": diarization_system.is_running if diarization_system and hasattr(diarization_system, 'is_running') else False
|
| 1052 |
+
}
|
| 1053 |
+
|
| 1054 |
+
@router.get("/api/conversation")
|
| 1055 |
+
async def get_conversation_api():
|
| 1056 |
+
"""Get current conversation"""
|
| 1057 |
+
try:
|
| 1058 |
+
return {
|
| 1059 |
+
"conversation": get_conversation(),
|
| 1060 |
+
"status": get_status(),
|
| 1061 |
+
"is_recording": diarization_system.is_running if diarization_system and hasattr(diarization_system, 'is_running') else False,
|
| 1062 |
+
"timestamp": time.time()
|
| 1063 |
+
}
|
| 1064 |
+
except Exception as e:
|
| 1065 |
+
return {"error": str(e), "timestamp": time.time()}
|
| 1066 |
+
|
| 1067 |
+
@router.post("/api/control/{action}")
|
| 1068 |
+
async def control_recording(action: str):
|
| 1069 |
+
"""Control recording actions"""
|
| 1070 |
+
try:
|
| 1071 |
+
if action == "start":
|
| 1072 |
+
result = start_recording()
|
| 1073 |
+
elif action == "stop":
|
| 1074 |
+
result = stop_recording()
|
| 1075 |
+
elif action == "clear":
|
| 1076 |
+
result = clear_conversation()
|
| 1077 |
+
elif action == "initialize":
|
| 1078 |
+
result = initialize_system()
|
| 1079 |
+
else:
|
| 1080 |
+
return {"error": "Invalid action. Use: start, stop, clear, or initialize"}
|
| 1081 |
+
|
| 1082 |
+
return {
|
| 1083 |
+
"result": result,
|
| 1084 |
+
"is_recording": diarization_system.is_running if diarization_system and hasattr(diarization_system, 'is_running') else False,
|
| 1085 |
+
"timestamp": time.time()
|
| 1086 |
+
}
|
| 1087 |
+
except Exception as e:
|
| 1088 |
+
return {"error": str(e), "timestamp": time.time()}
|
| 1089 |
+
|
| 1090 |
+
app.include_router(router)
|
| 1091 |
+
return app
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
# Function to setup FastRTC stream
|
| 1095 |
+
def setup_fastrtc_stream(app):
|
| 1096 |
+
"""Setup FastRTC stream with proper configuration"""
|
| 1097 |
+
try:
|
| 1098 |
+
if audio_handler is None:
|
| 1099 |
+
print("Warning: Audio handler not initialized. Initialize system first.")
|
| 1100 |
+
return None
|
| 1101 |
+
|
| 1102 |
+
# Get HuggingFace token for TURN server (optional)
|
| 1103 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 1104 |
+
|
| 1105 |
+
# Configure RTC settings
|
| 1106 |
+
rtc_config = {
|
| 1107 |
+
"iceServers": [
|
| 1108 |
+
{"urls": "stun:stun.l.google.com:19302"},
|
| 1109 |
+
{"urls": "stun:stun1.l.google.com:19302"}
|
| 1110 |
+
]
|
| 1111 |
+
}
|
| 1112 |
+
|
| 1113 |
+
# Create FastRTC stream
|
| 1114 |
+
stream = Stream(
|
| 1115 |
+
handler=audio_handler,
|
| 1116 |
+
rtc_configuration=rtc_config,
|
| 1117 |
+
modality="audio",
|
| 1118 |
+
mode="receive" # We only receive audio, don't send
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
# Mount the stream
|
| 1122 |
+
app.mount("/stream", stream)
|
| 1123 |
+
print("✅ FastRTC stream configured successfully!")
|
| 1124 |
+
return stream
|
| 1125 |
+
|
| 1126 |
+
except Exception as e:
|
| 1127 |
+
print(f"⚠️ Warning: Failed to setup FastRTC stream: {e}")
|
| 1128 |
+
print("Audio streaming may not work properly.")
|
| 1129 |
return None
|
| 1130 |
+
|
| 1131 |
+
|
| 1132 |
+
# Main application setup
|
| 1133 |
+
def create_app(diarization_sys=None):
|
| 1134 |
+
"""Create the complete application"""
|
| 1135 |
+
global diarization_system
|
| 1136 |
|
| 1137 |
+
# Set the diarization system
|
| 1138 |
+
if diarization_sys is not None:
|
| 1139 |
+
diarization_system = diarization_sys
|
| 1140 |
|
| 1141 |
+
# Create FastAPI app
|
| 1142 |
+
fastapi_app = create_fastapi_app()
|
| 1143 |
|
| 1144 |
+
# Create Gradio interface
|
| 1145 |
+
gradio_interface = create_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1146 |
|
| 1147 |
+
# Mount Gradio on FastAPI
|
| 1148 |
+
app = gr.mount_gradio_app(fastapi_app, gradio_interface, path="/")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1149 |
|
| 1150 |
+
# Setup FastRTC stream
|
| 1151 |
+
if diarization_system is not None:
|
| 1152 |
+
# Initialize the system if not already done
|
| 1153 |
+
if not hasattr(diarization_system, 'encoder') or diarization_system.encoder is None:
|
| 1154 |
+
diarization_system.initialize_models()
|
| 1155 |
+
|
| 1156 |
+
# Create audio handler if needed
|
| 1157 |
+
global audio_handler
|
| 1158 |
+
if audio_handler is None:
|
| 1159 |
+
audio_handler = DiarizationHandler(diarization_system)
|
| 1160 |
+
|
| 1161 |
+
# Setup and mount the FastRTC stream
|
| 1162 |
+
setup_fastrtc_stream(app)
|
| 1163 |
|
| 1164 |
+
return app, gradio_interface
|
| 1165 |
+
|
| 1166 |
+
|
| 1167 |
+
# Entry point for HuggingFace Spaces
|
| 1168 |
+
if __name__ == "__main__":
|
| 1169 |
+
try:
|
| 1170 |
+
# Import your diarization system here
|
| 1171 |
+
# from your_module import RealtimeSpeakerDiarization
|
| 1172 |
+
diarization_system = RealtimeSpeakerDiarization()
|
| 1173 |
+
|
| 1174 |
+
# Create the application
|
| 1175 |
+
app, interface = create_app()
|
| 1176 |
+
|
| 1177 |
+
# Launch for HuggingFace Spaces
|
| 1178 |
interface.launch(
|
| 1179 |
+
server_name="0.0.0.0",
|
| 1180 |
+
server_port=7860,
|
| 1181 |
share=True,
|
| 1182 |
+
show_error=True,
|
| 1183 |
+
quiet=False
|
| 1184 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1185 |
|
| 1186 |
+
except Exception as e:
|
| 1187 |
+
print(f"Failed to launch application: {e}")
|
| 1188 |
+
import traceback
|
| 1189 |
+
traceback.print_exc()
|
| 1190 |
+
|
| 1191 |
+
# Fallback - launch just Gradio interface
|
| 1192 |
+
try:
|
| 1193 |
interface = create_interface()
|
| 1194 |
interface.launch(
|
| 1195 |
+
server_name="0.0.0.0",
|
| 1196 |
+
server_port=int(os.environ.get("PORT", 7860)),
|
| 1197 |
+
share=False
|
|
|
|
| 1198 |
)
|
| 1199 |
+
except Exception as fallback_error:
|
| 1200 |
+
print(f"Fallback launch also failed: {fallback_error}")
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
# Helper function to initialize with your diarization system
|
| 1204 |
+
def initialize_with_diarization_system(diarization_sys):
|
| 1205 |
+
"""Initialize the application with your diarization system"""
|
| 1206 |
+
global diarization_system
|
| 1207 |
+
diarization_system = diarization_sys
|
| 1208 |
+
return create_app(diarization_sys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|