Spaces:
Sleeping
Sleeping
Commit
·
b9dea2c
1
Parent(s):
d65b6e8
Fixing gradio RealStream
Browse files
app.py
CHANGED
@@ -1,24 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import queue
|
4 |
import torch
|
|
|
5 |
import time
|
6 |
-
import threading
|
7 |
import os
|
8 |
import urllib.request
|
9 |
-
import torchaudio
|
10 |
from scipy.spatial.distance import cosine
|
11 |
-
import
|
|
|
|
|
12 |
import asyncio
|
13 |
-
from typing import
|
14 |
-
import logging
|
15 |
|
16 |
-
#
|
17 |
-
logging.basicConfig(level=logging.INFO)
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
-
|
20 |
-
# Simplified configuration parameters
|
21 |
-
SILENCE_THRESHS = [0, 0.4]
|
22 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
23 |
FINAL_BEAM_SIZE = 5
|
24 |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
@@ -35,33 +29,10 @@ EMBEDDING_HISTORY_SIZE = 5
|
|
35 |
MIN_SEGMENT_DURATION = 1.0
|
36 |
DEFAULT_MAX_SPEAKERS = 4
|
37 |
ABSOLUTE_MAX_SPEAKERS = 10
|
38 |
-
|
39 |
-
# Global variables
|
40 |
-
FAST_SENTENCE_END = True
|
41 |
SAMPLE_RATE = 16000
|
42 |
-
BUFFER_SIZE = 1024
|
43 |
-
CHANNELS = 1
|
44 |
-
CHUNK_DURATION_MS = 100 # 100ms chunks for FastRTC
|
45 |
-
|
46 |
-
# Speaker colors
|
47 |
-
SPEAKER_COLORS = [
|
48 |
-
"#FFFF00", # Yellow
|
49 |
-
"#FF0000", # Red
|
50 |
-
"#00FF00", # Green
|
51 |
-
"#00FFFF", # Cyan
|
52 |
-
"#FF00FF", # Magenta
|
53 |
-
"#0000FF", # Blue
|
54 |
-
"#FF8000", # Orange
|
55 |
-
"#00FF80", # Spring Green
|
56 |
-
"#8000FF", # Purple
|
57 |
-
"#FFFFFF", # White
|
58 |
-
]
|
59 |
-
|
60 |
-
SPEAKER_COLOR_NAMES = [
|
61 |
-
"Yellow", "Red", "Green", "Cyan", "Magenta",
|
62 |
-
"Blue", "Orange", "Spring Green", "Purple", "White"
|
63 |
-
]
|
64 |
|
|
|
|
|
65 |
|
66 |
class SpeechBrainEncoder:
|
67 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
@@ -73,24 +44,11 @@ class SpeechBrainEncoder:
|
|
73 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
74 |
os.makedirs(self.cache_dir, exist_ok=True)
|
75 |
|
76 |
-
def _download_model(self):
|
77 |
-
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
78 |
-
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
79 |
-
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
80 |
-
|
81 |
-
if not os.path.exists(model_path):
|
82 |
-
logger.info(f"Downloading ECAPA-TDNN model to {model_path}...")
|
83 |
-
urllib.request.urlretrieve(model_url, model_path)
|
84 |
-
|
85 |
-
return model_path
|
86 |
-
|
87 |
def load_model(self):
|
88 |
"""Load the ECAPA-TDNN model"""
|
89 |
try:
|
90 |
from speechbrain.pretrained import EncoderClassifier
|
91 |
|
92 |
-
model_path = self._download_model()
|
93 |
-
|
94 |
self.model = EncoderClassifier.from_hparams(
|
95 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
96 |
savedir=self.cache_dir,
|
@@ -100,7 +58,7 @@ class SpeechBrainEncoder:
|
|
100 |
self.model_loaded = True
|
101 |
return True
|
102 |
except Exception as e:
|
103 |
-
|
104 |
return False
|
105 |
|
106 |
def embed_utterance(self, audio, sr=16000):
|
@@ -122,31 +80,12 @@ class SpeechBrainEncoder:
|
|
122 |
|
123 |
return embedding.squeeze().cpu().numpy()
|
124 |
except Exception as e:
|
125 |
-
|
126 |
return np.zeros(self.embedding_dim)
|
127 |
|
128 |
|
129 |
-
class AudioProcessor:
|
130 |
-
"""Processes audio data to extract speaker embeddings"""
|
131 |
-
def __init__(self, encoder):
|
132 |
-
self.encoder = encoder
|
133 |
-
|
134 |
-
def extract_embedding(self, audio_float):
|
135 |
-
try:
|
136 |
-
# Ensure audio is in the right format
|
137 |
-
if np.abs(audio_float).max() > 1.0:
|
138 |
-
audio_float = audio_float / np.abs(audio_float).max()
|
139 |
-
|
140 |
-
embedding = self.encoder.embed_utterance(audio_float)
|
141 |
-
|
142 |
-
return embedding
|
143 |
-
except Exception as e:
|
144 |
-
logger.error(f"Embedding extraction error: {e}")
|
145 |
-
return np.zeros(self.encoder.embedding_dim)
|
146 |
-
|
147 |
-
|
148 |
class SpeakerChangeDetector:
|
149 |
-
"""Speaker change detector that supports
|
150 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
151 |
self.embedding_dim = embedding_dim
|
152 |
self.change_threshold = change_threshold
|
@@ -254,569 +193,317 @@ class SpeakerChangeDetector:
|
|
254 |
)
|
255 |
|
256 |
return self.current_speaker, similarity
|
257 |
-
|
258 |
-
def get_color_for_speaker(self, speaker_id):
|
259 |
-
"""Return color for speaker ID"""
|
260 |
-
if 0 <= speaker_id < len(SPEAKER_COLORS):
|
261 |
-
return SPEAKER_COLORS[speaker_id]
|
262 |
-
return "#FFFFFF"
|
263 |
-
|
264 |
-
def get_status_info(self):
|
265 |
-
"""Return status information about the speaker change detector"""
|
266 |
-
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
267 |
-
|
268 |
-
return {
|
269 |
-
"current_speaker": self.current_speaker,
|
270 |
-
"speaker_counts": speaker_counts,
|
271 |
-
"active_speakers": len(self.active_speakers),
|
272 |
-
"max_speakers": self.max_speakers,
|
273 |
-
"last_similarity": self.last_similarity,
|
274 |
-
"threshold": self.change_threshold
|
275 |
-
}
|
276 |
|
277 |
|
278 |
-
class
|
279 |
-
"""
|
280 |
-
def __init__(self,
|
281 |
-
self.
|
282 |
-
self.processor = None
|
283 |
-
self.model_name = model_name
|
284 |
-
self.model_loaded = False
|
285 |
-
|
286 |
-
def load_model(self):
|
287 |
-
"""Load Whisper model"""
|
288 |
-
try:
|
289 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
290 |
-
|
291 |
-
model_id = f"distil-whisper/distil-{self.model_name}" if "distil" in self.model_name else f"openai/whisper-{self.model_name}"
|
292 |
-
|
293 |
-
self.processor = WhisperProcessor.from_pretrained(model_id)
|
294 |
-
self.model = WhisperForConditionalGeneration.from_pretrained(
|
295 |
-
model_id,
|
296 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
297 |
-
low_cpu_mem_usage=True,
|
298 |
-
use_safetensors=True
|
299 |
-
)
|
300 |
-
|
301 |
-
if torch.cuda.is_available():
|
302 |
-
self.model = self.model.cuda()
|
303 |
-
|
304 |
-
self.model_loaded = True
|
305 |
-
return True
|
306 |
-
except Exception as e:
|
307 |
-
logger.error(f"Error loading Whisper model: {e}")
|
308 |
-
return False
|
309 |
|
310 |
-
def
|
311 |
-
"""Transcribe audio array"""
|
312 |
-
if not self.model_loaded:
|
313 |
-
return ""
|
314 |
-
|
315 |
try:
|
316 |
-
# Ensure audio is
|
317 |
-
if
|
318 |
-
|
319 |
-
|
320 |
-
# Resample if needed
|
321 |
-
if sample_rate != 16000:
|
322 |
-
import torchaudio.functional as F
|
323 |
-
audio_tensor = torch.tensor(audio_array, dtype=torch.float32)
|
324 |
-
audio_array = F.resample(audio_tensor, sample_rate, 16000).numpy()
|
325 |
-
|
326 |
-
# Process with Whisper
|
327 |
-
inputs = self.processor(
|
328 |
-
audio_array,
|
329 |
-
sampling_rate=16000,
|
330 |
-
return_tensors="pt",
|
331 |
-
truncation=False,
|
332 |
-
padding=True
|
333 |
-
)
|
334 |
|
335 |
-
if
|
336 |
-
|
|
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
inputs["input_features"],
|
341 |
-
max_length=448,
|
342 |
-
num_beams=1,
|
343 |
-
do_sample=False,
|
344 |
-
use_cache=True
|
345 |
-
)
|
346 |
-
|
347 |
-
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
348 |
|
349 |
-
return
|
350 |
except Exception as e:
|
351 |
-
|
352 |
-
return
|
353 |
|
354 |
|
355 |
-
class
|
356 |
-
|
|
|
357 |
self.encoder = None
|
358 |
self.audio_processor = None
|
359 |
self.speaker_detector = None
|
360 |
-
self.
|
361 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
362 |
self.processing_thread = None
|
363 |
-
self.
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
self.
|
368 |
-
|
369 |
-
|
370 |
-
self.last_transcription_time = time.time()
|
371 |
-
self.chunk_size = int(SAMPLE_RATE * CHUNK_DURATION_MS / 1000)
|
372 |
-
|
373 |
-
def initialize_models(self):
|
374 |
-
"""Initialize the speaker encoder and transcription models"""
|
375 |
try:
|
376 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
377 |
-
|
378 |
|
379 |
-
# Initialize speaker encoder
|
380 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
381 |
-
|
382 |
-
|
383 |
-
# Initialize transcriber
|
384 |
-
self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL)
|
385 |
-
transcriber_success = self.transcriber.load_model()
|
386 |
|
387 |
-
if
|
388 |
-
self.audio_processor = AudioProcessor(self.encoder)
|
389 |
-
self.speaker_detector = SpeakerChangeDetector(
|
390 |
-
embedding_dim=self.encoder.embedding_dim,
|
391 |
-
change_threshold=self.change_threshold,
|
392 |
-
max_speakers=self.max_speakers
|
393 |
-
)
|
394 |
-
logger.info("Models loaded successfully!")
|
395 |
-
return True
|
396 |
-
else:
|
397 |
-
logger.error("Failed to load models")
|
398 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
except Exception as e:
|
400 |
-
|
401 |
return False
|
402 |
|
403 |
-
def
|
404 |
-
"""
|
405 |
-
|
406 |
-
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
# Ensure mono audio
|
412 |
-
if len(audio_chunk.shape) > 1:
|
413 |
-
audio_chunk = audio_chunk.mean(axis=1)
|
414 |
-
|
415 |
-
# Normalize audio
|
416 |
-
if audio_chunk.dtype != np.float32:
|
417 |
-
audio_chunk = audio_chunk.astype(np.float32)
|
418 |
-
|
419 |
-
if np.abs(audio_chunk).max() > 1.0:
|
420 |
-
audio_chunk = audio_chunk / np.abs(audio_chunk).max()
|
421 |
-
|
422 |
-
# Add to buffer
|
423 |
-
self.audio_buffer.extend(audio_chunk)
|
424 |
-
|
425 |
-
# Keep buffer to specified duration
|
426 |
-
max_buffer_length = int(self.buffer_duration * sample_rate)
|
427 |
-
if len(self.audio_buffer) > max_buffer_length:
|
428 |
-
self.audio_buffer = self.audio_buffer[-max_buffer_length:]
|
429 |
-
|
430 |
-
# Process if enough audio accumulated and enough time passed
|
431 |
-
current_time = time.time()
|
432 |
-
if (current_time - self.last_transcription_time > 1.5 and
|
433 |
-
len(self.audio_buffer) > sample_rate * 0.8): # At least 0.8 seconds
|
434 |
-
|
435 |
-
if not self.audio_queue.full():
|
436 |
-
self.audio_queue.put((np.array(self.audio_buffer[-int(sample_rate * 2):]), sample_rate))
|
437 |
-
self.last_transcription_time = current_time
|
438 |
-
|
439 |
-
except Exception as e:
|
440 |
-
logger.error(f"Audio chunk processing error: {e}")
|
441 |
-
|
442 |
-
def process_audio_queue(self):
|
443 |
-
"""Process audio from the queue"""
|
444 |
-
while self.is_running:
|
445 |
-
try:
|
446 |
-
audio_data, sample_rate = self.audio_queue.get(timeout=1)
|
447 |
-
|
448 |
-
if len(audio_data) < 1600: # Skip very short audio
|
449 |
-
continue
|
450 |
-
|
451 |
-
# Transcribe audio
|
452 |
-
transcription = self.transcriber.transcribe(audio_data, sample_rate)
|
453 |
-
|
454 |
-
if transcription and len(transcription.strip()) > 0:
|
455 |
-
# Extract speaker embedding
|
456 |
-
speaker_embedding = self.audio_processor.extract_embedding(audio_data)
|
457 |
-
|
458 |
-
# Detect speaker
|
459 |
-
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
|
460 |
-
|
461 |
-
# Store results
|
462 |
-
self.full_sentences.append(transcription.strip())
|
463 |
-
self.sentence_speakers.append(speaker_id)
|
464 |
-
|
465 |
-
logger.info(f"Processed: Speaker {speaker_id + 1}: {transcription.strip()[:50]}...")
|
466 |
-
|
467 |
-
except queue.Empty:
|
468 |
-
continue
|
469 |
-
except Exception as e:
|
470 |
-
logger.error(f"Error processing audio queue: {e}")
|
471 |
|
472 |
-
def
|
473 |
-
"""
|
474 |
-
if
|
475 |
-
return
|
476 |
-
|
477 |
try:
|
478 |
-
|
479 |
-
|
480 |
-
self.last_transcription_time = time.time()
|
481 |
|
482 |
-
#
|
483 |
-
|
484 |
-
try:
|
485 |
-
self.audio_queue.get_nowait()
|
486 |
-
except queue.Empty:
|
487 |
-
break
|
488 |
|
489 |
-
#
|
490 |
-
|
491 |
-
|
492 |
|
493 |
-
|
494 |
-
return "Recording started successfully!"
|
495 |
|
496 |
except Exception as e:
|
497 |
-
|
498 |
-
return f"
|
499 |
|
500 |
-
def
|
501 |
-
"""
|
502 |
-
self.
|
503 |
-
logger.info("Recording stopped!")
|
504 |
-
return "Recording stopped!"
|
505 |
|
506 |
-
def
|
507 |
-
"""
|
508 |
-
self.
|
509 |
-
self.sentence_speakers = []
|
510 |
-
self.audio_buffer = []
|
511 |
-
|
512 |
-
# Clear the queue
|
513 |
-
while not self.audio_queue.empty():
|
514 |
-
try:
|
515 |
-
self.audio_queue.get_nowait()
|
516 |
-
except queue.Empty:
|
517 |
-
break
|
518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
if self.speaker_detector:
|
520 |
self.speaker_detector = SpeakerChangeDetector(
|
521 |
embedding_dim=self.encoder.embedding_dim,
|
522 |
change_threshold=self.change_threshold,
|
523 |
max_speakers=self.max_speakers
|
524 |
)
|
525 |
-
|
526 |
-
return "Conversation cleared!"
|
527 |
-
|
528 |
-
def update_settings(self, threshold, max_speakers):
|
529 |
-
"""Update speaker detection settings"""
|
530 |
-
self.change_threshold = threshold
|
531 |
-
self.max_speakers = max_speakers
|
532 |
-
|
533 |
-
if self.speaker_detector:
|
534 |
-
self.speaker_detector.set_change_threshold(threshold)
|
535 |
-
self.speaker_detector.set_max_speakers(max_speakers)
|
536 |
-
|
537 |
-
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
538 |
-
|
539 |
-
def get_formatted_conversation(self):
|
540 |
-
"""Get the formatted conversation with speaker colors"""
|
541 |
-
try:
|
542 |
-
if not self.full_sentences:
|
543 |
-
return "Waiting for speech input... 🎤"
|
544 |
-
|
545 |
-
sentences_with_style = []
|
546 |
-
|
547 |
-
for i, sentence in enumerate(self.full_sentences[-10:]): # Show last 10 sentences
|
548 |
-
if i >= len(self.sentence_speakers):
|
549 |
-
color = "#FFFFFF"
|
550 |
-
speaker_name = "Unknown"
|
551 |
-
else:
|
552 |
-
speaker_id = self.sentence_speakers[-(10-i) if len(self.sentence_speakers) >= 10 else i]
|
553 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
554 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
555 |
-
|
556 |
-
sentences_with_style.append(
|
557 |
-
f'<p><span style="color:{color}; font-weight: bold;">{speaker_name}:</span> {sentence}</p>')
|
558 |
-
|
559 |
-
return "".join(sentences_with_style)
|
560 |
-
|
561 |
-
except Exception as e:
|
562 |
-
return f"Error formatting conversation: {e}"
|
563 |
-
|
564 |
-
def get_status_info(self):
|
565 |
-
"""Get current status information"""
|
566 |
-
if not self.speaker_detector:
|
567 |
-
return "Speaker detector not initialized"
|
568 |
-
|
569 |
-
try:
|
570 |
-
status = self.speaker_detector.get_status_info()
|
571 |
-
queue_size = self.audio_queue.qsize()
|
572 |
-
|
573 |
-
status_lines = [
|
574 |
-
f"**Current Speaker:** {status['current_speaker'] + 1}",
|
575 |
-
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
576 |
-
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
577 |
-
f"**Change Threshold:** {status['threshold']:.2f}",
|
578 |
-
f"**Total Sentences:** {len(self.full_sentences)}",
|
579 |
-
f"**Buffer Length:** {len(self.audio_buffer)} samples",
|
580 |
-
f"**Queue Size:** {queue_size}",
|
581 |
-
"",
|
582 |
-
"**Speaker Segment Counts:**"
|
583 |
-
]
|
584 |
-
|
585 |
-
for i in range(status['max_speakers']):
|
586 |
-
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
587 |
-
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
|
588 |
-
|
589 |
-
return "\n".join(status_lines)
|
590 |
-
|
591 |
-
except Exception as e:
|
592 |
-
return f"Error getting status: {e}"
|
593 |
|
594 |
|
595 |
# Global instance
|
596 |
-
diarization_system =
|
597 |
|
598 |
|
599 |
-
def initialize_system():
|
600 |
"""Initialize the diarization system"""
|
601 |
-
success = diarization_system.
|
602 |
if success:
|
603 |
-
return "✅
|
604 |
else:
|
605 |
-
return "❌ Failed to initialize system. Please check
|
606 |
-
|
607 |
|
608 |
-
def start_recording():
|
609 |
-
"""Start recording and transcription"""
|
610 |
-
return diarization_system.start_recording()
|
611 |
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
|
618 |
def clear_conversation():
|
619 |
-
"""Clear the conversation"""
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
def update_settings(threshold, max_speakers):
|
624 |
-
"""Update system settings"""
|
625 |
-
return diarization_system.update_settings(threshold, max_speakers)
|
626 |
-
|
627 |
-
|
628 |
-
def get_conversation():
|
629 |
-
"""Get the current conversation"""
|
630 |
-
return diarization_system.get_formatted_conversation()
|
631 |
|
632 |
|
633 |
-
def
|
634 |
-
"""
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
def process_audio_stream(audio_stream):
|
639 |
-
"""Process streaming audio from FastRTC"""
|
640 |
-
if audio_stream is not None and diarization_system.is_running:
|
641 |
-
sample_rate, audio_data = audio_stream
|
642 |
-
diarization_system.process_audio_chunk(audio_data, sample_rate)
|
643 |
-
|
644 |
-
return get_conversation(), get_status()
|
645 |
-
|
646 |
-
|
647 |
-
# Create Gradio interface with FastRTC
|
648 |
-
def create_interface():
|
649 |
-
with gr.Blocks(title="FastRTC Real-time Speaker Diarization", theme=gr.themes.Soft()) as app:
|
650 |
-
gr.Markdown("# 🎤 FastRTC Real-time Speech Recognition with Speaker Diarization")
|
651 |
-
gr.Markdown("This app uses Hugging Face FastRTC for real-time audio streaming with automatic speaker identification and color-coding.")
|
652 |
|
|
|
653 |
with gr.Row():
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
container=True,
|
664 |
-
elem_id="fastrtc_audio"
|
665 |
-
)
|
666 |
-
|
667 |
-
# Main conversation display
|
668 |
-
conversation_output = gr.HTML(
|
669 |
-
value="<i>Click 'Initialize System' and then 'Start Recording' to begin...</i>",
|
670 |
-
label="Live Conversation",
|
671 |
-
elem_id="conversation_display"
|
672 |
-
)
|
673 |
-
|
674 |
-
# Control buttons
|
675 |
-
with gr.Row():
|
676 |
-
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
677 |
-
start_btn = gr.Button("🎙️ Start Recording", variant="primary", interactive=False, size="lg")
|
678 |
-
stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False, size="lg")
|
679 |
-
clear_btn = gr.Button("🗑️ Clear", interactive=False, size="lg")
|
680 |
-
|
681 |
-
# Status display
|
682 |
-
status_output = gr.Textbox(
|
683 |
-
label="System Status",
|
684 |
-
value="System not initialized",
|
685 |
-
lines=10,
|
686 |
-
interactive=False,
|
687 |
-
show_copy_button=True
|
688 |
-
)
|
689 |
-
|
690 |
-
with gr.Column(scale=1):
|
691 |
-
# Settings panel
|
692 |
-
gr.Markdown("## ⚙️ Settings")
|
693 |
-
|
694 |
-
threshold_slider = gr.Slider(
|
695 |
-
minimum=0.1,
|
696 |
-
maximum=0.95,
|
697 |
-
step=0.05,
|
698 |
value=DEFAULT_CHANGE_THRESHOLD,
|
699 |
-
|
700 |
-
|
|
|
701 |
)
|
702 |
-
|
703 |
-
|
704 |
minimum=2,
|
705 |
maximum=ABSOLUTE_MAX_SPEAKERS,
|
706 |
-
step=1,
|
707 |
value=DEFAULT_MAX_SPEAKERS,
|
708 |
-
|
|
|
|
|
709 |
)
|
710 |
-
|
711 |
-
update_settings_btn = gr.Button("Update Settings", variant="secondary")
|
712 |
-
|
713 |
-
# Speaker color legend
|
714 |
-
gr.Markdown("## 🎨 Speaker Colors")
|
715 |
-
color_info = []
|
716 |
-
for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
|
717 |
-
color_info.append(f'<span style="color:{color}; font-size: 16px;">●</span> Speaker {i+1} ({name})')
|
718 |
-
|
719 |
-
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
720 |
-
|
721 |
-
# Performance info
|
722 |
-
gr.Markdown("## 📊 Performance")
|
723 |
-
gr.Markdown("""
|
724 |
-
- **FastRTC**: Low-latency audio streaming
|
725 |
-
- **Whisper**: distil-large-v3 for transcription
|
726 |
-
- **ECAPA-TDNN**: Speaker embeddings
|
727 |
-
- **Real-time**: ~100ms processing chunks
|
728 |
-
""")
|
729 |
|
730 |
-
#
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
gr.update(interactive=True), # clear_btn
|
738 |
-
get_conversation(), # conversation_output
|
739 |
-
get_status() # status_output update
|
740 |
)
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
gr.update(interactive=False), # clear_btn
|
746 |
-
get_conversation(), # conversation_output
|
747 |
-
get_status() # status_output update
|
748 |
)
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
# Auto-refresh function
|
767 |
-
def refresh_display():
|
768 |
-
return get_conversation(), get_status()
|
769 |
-
|
770 |
-
# Connect event handlers
|
771 |
-
init_btn.click(
|
772 |
-
on_initialize,
|
773 |
-
outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
|
774 |
)
|
775 |
|
776 |
-
|
777 |
-
|
778 |
-
|
|
|
779 |
)
|
780 |
|
781 |
-
|
782 |
-
|
783 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
)
|
785 |
|
786 |
clear_btn.click(
|
787 |
-
clear_conversation,
|
788 |
-
outputs=[
|
789 |
)
|
790 |
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
)
|
796 |
|
797 |
-
#
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
)
|
|
|
|
|
|
|
812 |
|
813 |
-
return
|
814 |
|
815 |
|
816 |
if __name__ == "__main__":
|
817 |
-
|
818 |
-
|
|
|
|
|
819 |
server_name="0.0.0.0",
|
820 |
server_port=7860,
|
821 |
-
|
822 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import torch
|
4 |
+
import torchaudio
|
5 |
import time
|
|
|
6 |
import os
|
7 |
import urllib.request
|
|
|
8 |
from scipy.spatial.distance import cosine
|
9 |
+
import threading
|
10 |
+
import queue
|
11 |
+
from collections import deque
|
12 |
import asyncio
|
13 |
+
from typing import Generator, Tuple, List, Optional
|
|
|
14 |
|
15 |
+
# Configuration parameters (keeping original models)
|
|
|
|
|
|
|
|
|
|
|
16 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
17 |
FINAL_BEAM_SIZE = 5
|
18 |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
|
|
29 |
MIN_SEGMENT_DURATION = 1.0
|
30 |
DEFAULT_MAX_SPEAKERS = 4
|
31 |
ABSOLUTE_MAX_SPEAKERS = 10
|
|
|
|
|
|
|
32 |
SAMPLE_RATE = 16000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Speaker labels
|
35 |
+
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]
|
36 |
|
37 |
class SpeechBrainEncoder:
|
38 |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
|
|
44 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
45 |
os.makedirs(self.cache_dir, exist_ok=True)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def load_model(self):
|
48 |
"""Load the ECAPA-TDNN model"""
|
49 |
try:
|
50 |
from speechbrain.pretrained import EncoderClassifier
|
51 |
|
|
|
|
|
52 |
self.model = EncoderClassifier.from_hparams(
|
53 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
54 |
savedir=self.cache_dir,
|
|
|
58 |
self.model_loaded = True
|
59 |
return True
|
60 |
except Exception as e:
|
61 |
+
print(f"Error loading ECAPA-TDNN model: {e}")
|
62 |
return False
|
63 |
|
64 |
def embed_utterance(self, audio, sr=16000):
|
|
|
80 |
|
81 |
return embedding.squeeze().cpu().numpy()
|
82 |
except Exception as e:
|
83 |
+
print(f"Error extracting embedding: {e}")
|
84 |
return np.zeros(self.embedding_dim)
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
class SpeakerChangeDetector:
|
88 |
+
"""Speaker change detector that supports configurable number of speakers"""
|
89 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
90 |
self.embedding_dim = embedding_dim
|
91 |
self.change_threshold = change_threshold
|
|
|
193 |
)
|
194 |
|
195 |
return self.current_speaker, similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
|
198 |
+
class AudioProcessor:
|
199 |
+
"""Processes audio data to extract speaker embeddings"""
|
200 |
+
def __init__(self, encoder):
|
201 |
+
self.encoder = encoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
def extract_embedding(self, audio_data):
|
|
|
|
|
|
|
|
|
204 |
try:
|
205 |
+
# Ensure audio is float32 and normalized
|
206 |
+
if audio_data.dtype != np.float32:
|
207 |
+
audio_data = audio_data.astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
# Normalize if needed
|
210 |
+
if np.abs(audio_data).max() > 1.0:
|
211 |
+
audio_data = audio_data / np.abs(audio_data).max()
|
212 |
|
213 |
+
# Extract embedding using the loaded encoder
|
214 |
+
embedding = self.encoder.embed_utterance(audio_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
return embedding
|
217 |
except Exception as e:
|
218 |
+
print(f"Embedding extraction error: {e}")
|
219 |
+
return np.zeros(self.encoder.embedding_dim)
|
220 |
|
221 |
|
222 |
+
class RealTimeSpeakerDiarization:
|
223 |
+
"""Main class for real-time speaker diarization"""
|
224 |
+
def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
225 |
self.encoder = None
|
226 |
self.audio_processor = None
|
227 |
self.speaker_detector = None
|
228 |
+
self.change_threshold = change_threshold
|
229 |
+
self.max_speakers = max_speakers
|
230 |
+
self.transcript_history = []
|
231 |
+
self.is_initialized = False
|
232 |
+
|
233 |
+
# Threading components
|
234 |
+
self.audio_queue = queue.Queue()
|
235 |
self.processing_thread = None
|
236 |
+
self.running = False
|
237 |
+
|
238 |
+
async def initialize(self):
|
239 |
+
"""Initialize the speaker diarization system"""
|
240 |
+
if self.is_initialized:
|
241 |
+
return True
|
242 |
+
|
|
|
|
|
|
|
|
|
|
|
243 |
try:
|
244 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
245 |
+
print(f"Initializing ECAPA-TDNN model on {device_str}...")
|
246 |
|
|
|
247 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
248 |
+
success = self.encoder.load_model()
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
if not success:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
return False
|
252 |
+
|
253 |
+
self.audio_processor = AudioProcessor(self.encoder)
|
254 |
+
self.speaker_detector = SpeakerChangeDetector(
|
255 |
+
embedding_dim=self.encoder.embedding_dim,
|
256 |
+
change_threshold=self.change_threshold,
|
257 |
+
max_speakers=self.max_speakers
|
258 |
+
)
|
259 |
+
|
260 |
+
self.is_initialized = True
|
261 |
+
print("Speaker diarization system initialized successfully!")
|
262 |
+
return True
|
263 |
+
|
264 |
except Exception as e:
|
265 |
+
print(f"Initialization error: {e}")
|
266 |
return False
|
267 |
|
268 |
+
def update_settings(self, change_threshold, max_speakers):
|
269 |
+
"""Update diarization settings"""
|
270 |
+
self.change_threshold = change_threshold
|
271 |
+
self.max_speakers = max_speakers
|
272 |
|
273 |
+
if self.speaker_detector:
|
274 |
+
self.speaker_detector.set_change_threshold(change_threshold)
|
275 |
+
self.speaker_detector.set_max_speakers(max_speakers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
+
def process_audio_segment(self, audio_data: np.ndarray, text: str) -> Tuple[int, str]:
|
278 |
+
"""Process an audio segment and return speaker ID and formatted text"""
|
279 |
+
if not self.is_initialized:
|
280 |
+
return 0, text
|
281 |
+
|
282 |
try:
|
283 |
+
# Extract speaker embedding
|
284 |
+
embedding = self.audio_processor.extract_embedding(audio_data)
|
|
|
285 |
|
286 |
+
# Detect speaker
|
287 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
# Format text with speaker label
|
290 |
+
speaker_label = SPEAKER_LABELS[speaker_id]
|
291 |
+
formatted_text = f"{speaker_label}: {text}"
|
292 |
|
293 |
+
return speaker_id, formatted_text
|
|
|
294 |
|
295 |
except Exception as e:
|
296 |
+
print(f"Error processing audio segment: {e}")
|
297 |
+
return 0, f"Speaker 1: {text}"
|
298 |
|
299 |
+
def get_transcript_history(self):
|
300 |
+
"""Get the formatted transcript history"""
|
301 |
+
return "\n".join(self.transcript_history)
|
|
|
|
|
302 |
|
303 |
+
def add_to_transcript(self, formatted_text: str):
|
304 |
+
"""Add formatted text to transcript history"""
|
305 |
+
self.transcript_history.append(formatted_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
# Keep only last 50 entries to prevent memory issues
|
308 |
+
if len(self.transcript_history) > 50:
|
309 |
+
self.transcript_history = self.transcript_history[-50:]
|
310 |
+
|
311 |
+
def clear_transcript(self):
|
312 |
+
"""Clear transcript history and reset speaker detector"""
|
313 |
+
self.transcript_history = []
|
314 |
if self.speaker_detector:
|
315 |
self.speaker_detector = SpeakerChangeDetector(
|
316 |
embedding_dim=self.encoder.embedding_dim,
|
317 |
change_threshold=self.change_threshold,
|
318 |
max_speakers=self.max_speakers
|
319 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
# Global instance
|
323 |
+
diarization_system = RealTimeSpeakerDiarization()
|
324 |
|
325 |
|
326 |
+
async def initialize_system():
|
327 |
"""Initialize the diarization system"""
|
328 |
+
success = await diarization_system.initialize()
|
329 |
if success:
|
330 |
+
return "✅ Speaker diarization system initialized successfully!"
|
331 |
else:
|
332 |
+
return "❌ Failed to initialize speaker diarization system. Please check your setup."
|
|
|
333 |
|
|
|
|
|
|
|
334 |
|
335 |
+
def process_audio_with_transcript(audio_data, sample_rate, transcription_text, change_threshold, max_speakers):
|
336 |
+
"""Process audio with transcription for speaker diarization"""
|
337 |
+
if not diarization_system.is_initialized:
|
338 |
+
return "Please initialize the system first.", ""
|
339 |
+
|
340 |
+
if audio_data is None or transcription_text.strip() == "":
|
341 |
+
return diarization_system.get_transcript_history(), ""
|
342 |
+
|
343 |
+
try:
|
344 |
+
# Update settings
|
345 |
+
diarization_system.update_settings(change_threshold, max_speakers)
|
346 |
+
|
347 |
+
# Convert audio to the right format
|
348 |
+
if len(audio_data.shape) > 1:
|
349 |
+
audio_data = audio_data.mean(axis=1) # Convert to mono
|
350 |
+
|
351 |
+
# Resample if needed
|
352 |
+
if sample_rate != SAMPLE_RATE:
|
353 |
+
audio_data = torchaudio.functional.resample(
|
354 |
+
torch.tensor(audio_data), sample_rate, SAMPLE_RATE
|
355 |
+
).numpy()
|
356 |
+
|
357 |
+
# Process the audio segment
|
358 |
+
speaker_id, formatted_text = diarization_system.process_audio_segment(audio_data, transcription_text)
|
359 |
+
|
360 |
+
# Add to transcript
|
361 |
+
diarization_system.add_to_transcript(formatted_text)
|
362 |
+
|
363 |
+
# Return updated transcript and current speaker info
|
364 |
+
transcript = diarization_system.get_transcript_history()
|
365 |
+
current_speaker_info = f"Current Speaker: {SPEAKER_LABELS[speaker_id]}"
|
366 |
+
|
367 |
+
return transcript, current_speaker_info
|
368 |
+
|
369 |
+
except Exception as e:
|
370 |
+
error_msg = f"Error processing audio: {str(e)}"
|
371 |
+
return diarization_system.get_transcript_history(), error_msg
|
372 |
|
373 |
|
374 |
def clear_conversation():
|
375 |
+
"""Clear the conversation transcript"""
|
376 |
+
diarization_system.clear_transcript()
|
377 |
+
return "", "Conversation cleared."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
|
380 |
+
def create_gradio_interface():
|
381 |
+
"""Create and return the Gradio interface"""
|
382 |
+
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
|
383 |
+
gr.Markdown("# 🎙️ Real-time Speaker Diarization with ASR")
|
384 |
+
gr.Markdown("Upload audio with transcription to perform real-time speaker diarization.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
+
# Initialization section
|
387 |
with gr.Row():
|
388 |
+
init_btn = gr.Button("🚀 Initialize System", variant="primary")
|
389 |
+
init_status = gr.Textbox(label="Initialization Status", interactive=False)
|
390 |
+
|
391 |
+
# Settings section
|
392 |
+
with gr.Row():
|
393 |
+
with gr.Column():
|
394 |
+
change_threshold = gr.Slider(
|
395 |
+
minimum=0.1,
|
396 |
+
maximum=0.9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
value=DEFAULT_CHANGE_THRESHOLD,
|
398 |
+
step=0.05,
|
399 |
+
label="Speaker Change Threshold",
|
400 |
+
info="Lower values = more sensitive to speaker changes"
|
401 |
)
|
402 |
+
with gr.Column():
|
403 |
+
max_speakers = gr.Slider(
|
404 |
minimum=2,
|
405 |
maximum=ABSOLUTE_MAX_SPEAKERS,
|
|
|
406 |
value=DEFAULT_MAX_SPEAKERS,
|
407 |
+
step=1,
|
408 |
+
label="Maximum Number of Speakers",
|
409 |
+
info="Maximum number of speakers to detect"
|
410 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
+
# Audio input and transcription
|
413 |
+
with gr.Row():
|
414 |
+
with gr.Column():
|
415 |
+
audio_input = gr.Audio(
|
416 |
+
label="Audio Input",
|
417 |
+
type="numpy",
|
418 |
+
format="wav"
|
|
|
|
|
|
|
419 |
)
|
420 |
+
transcription_input = gr.Textbox(
|
421 |
+
label="Transcription Text",
|
422 |
+
placeholder="Enter the transcription of the audio...",
|
423 |
+
lines=3
|
|
|
|
|
|
|
424 |
)
|
425 |
+
process_btn = gr.Button("🎯 Process Audio", variant="secondary")
|
426 |
+
|
427 |
+
with gr.Column():
|
428 |
+
current_speaker = gr.Textbox(
|
429 |
+
label="Current Speaker",
|
430 |
+
interactive=False
|
431 |
+
)
|
432 |
+
clear_btn = gr.Button("🗑️ Clear Conversation", variant="stop")
|
433 |
+
|
434 |
+
# Output section
|
435 |
+
transcript_output = gr.Textbox(
|
436 |
+
label="Live Transcript with Speaker Labels",
|
437 |
+
lines=15,
|
438 |
+
max_lines=20,
|
439 |
+
interactive=False,
|
440 |
+
placeholder="Processed transcript will appear here..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
)
|
442 |
|
443 |
+
# Event handlers
|
444 |
+
init_btn.click(
|
445 |
+
fn=initialize_system,
|
446 |
+
outputs=[init_status]
|
447 |
)
|
448 |
|
449 |
+
process_btn.click(
|
450 |
+
fn=process_audio_with_transcript,
|
451 |
+
inputs=[
|
452 |
+
audio_input,
|
453 |
+
gr.Number(value=SAMPLE_RATE, visible=False), # Hidden sample rate
|
454 |
+
transcription_input,
|
455 |
+
change_threshold,
|
456 |
+
max_speakers
|
457 |
+
],
|
458 |
+
outputs=[transcript_output, current_speaker]
|
459 |
)
|
460 |
|
461 |
clear_btn.click(
|
462 |
+
fn=clear_conversation,
|
463 |
+
outputs=[transcript_output, current_speaker]
|
464 |
)
|
465 |
|
466 |
+
# Auto-process when audio and transcription are provided
|
467 |
+
audio_input.change(
|
468 |
+
fn=process_audio_with_transcript,
|
469 |
+
inputs=[
|
470 |
+
audio_input,
|
471 |
+
gr.Number(value=SAMPLE_RATE, visible=False),
|
472 |
+
transcription_input,
|
473 |
+
change_threshold,
|
474 |
+
max_speakers
|
475 |
+
],
|
476 |
+
outputs=[transcript_output, current_speaker]
|
477 |
)
|
478 |
|
479 |
+
# Instructions
|
480 |
+
gr.Markdown("""
|
481 |
+
## Instructions:
|
482 |
+
1. **Initialize**: Click "Initialize System" to load the speaker diarization models
|
483 |
+
2. **Upload Audio**: Upload an audio file (WAV format recommended)
|
484 |
+
3. **Add Transcription**: Enter the transcription text for the audio
|
485 |
+
4. **Adjust Settings**:
|
486 |
+
- **Speaker Change Threshold**: Lower values detect speaker changes more easily
|
487 |
+
- **Max Speakers**: Set the maximum number of speakers you expect
|
488 |
+
5. **Process**: Click "Process Audio" or the system will auto-process
|
489 |
+
6. **View Results**: See the transcript with speaker labels (Speaker 1, Speaker 2, etc.)
|
490 |
+
|
491 |
+
## Tips:
|
492 |
+
- For similar-sounding speakers, increase the threshold (0.6-0.8)
|
493 |
+
- For different-sounding speakers, lower threshold works better (0.3-0.5)
|
494 |
+
- The system maintains speaker consistency across the conversation
|
495 |
+
- Use "Clear Conversation" to reset the speaker memory
|
496 |
+
""")
|
497 |
|
498 |
+
return demo
|
499 |
|
500 |
|
501 |
if __name__ == "__main__":
|
502 |
+
# Create and launch the Gradio interface
|
503 |
+
demo = create_gradio_interface()
|
504 |
+
demo.launch(
|
505 |
+
share=True,
|
506 |
server_name="0.0.0.0",
|
507 |
server_port=7860,
|
508 |
+
show_error=True
|
509 |
)
|