import gradio as gr import numpy as np import queue import torch import time import threading import os import urllib.request import torchaudio from scipy.spatial.distance import cosine from RealtimeSTT import AudioToTextRecorder from fastapi import FastAPI import json import io import wave import asyncio import uvicorn import logging # Configure logging to reduce noise logging.getLogger("uvicorn").setLevel(logging.WARNING) logging.getLogger("gradio").setLevel(logging.WARNING) # Simplified configuration parameters SILENCE_THRESHS = [0, 0.4] FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" FINAL_BEAM_SIZE = 5 REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" REALTIME_BEAM_SIZE = 5 TRANSCRIPTION_LANGUAGE = "en" SILERO_SENSITIVITY = 0.4 WEBRTC_SENSITIVITY = 3 MIN_LENGTH_OF_RECORDING = 0.7 PRE_RECORDING_BUFFER_DURATION = 0.35 # Speaker change detection parameters DEFAULT_CHANGE_THRESHOLD = 0.7 EMBEDDING_HISTORY_SIZE = 5 MIN_SEGMENT_DURATION = 1.0 DEFAULT_MAX_SPEAKERS = 4 ABSOLUTE_MAX_SPEAKERS = 10 # Global variables FAST_SENTENCE_END = True SAMPLE_RATE = 16000 BUFFER_SIZE = 512 CHANNELS = 1 # Speaker colors SPEAKER_COLORS = [ "#FFFF00", # Yellow "#FF0000", # Red "#00FF00", # Green "#00FFFF", # Cyan "#FF00FF", # Magenta "#0000FF", # Blue "#FF8000", # Orange "#00FF80", # Spring Green "#8000FF", # Purple "#FFFFFF", # White ] SPEAKER_COLOR_NAMES = [ "Yellow", "Red", "Green", "Cyan", "Magenta", "Blue", "Orange", "Spring Green", "Purple", "White" ] class SpeechBrainEncoder: """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" def __init__(self, device="cpu"): self.device = device self.model = None self.embedding_dim = 192 self.model_loaded = False self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") os.makedirs(self.cache_dir, exist_ok=True) def load_model(self): """Load the ECAPA-TDNN model with error handling""" try: # Try to import speechbrain try: from speechbrain.pretrained import EncoderClassifier except ImportError: print("SpeechBrain not available. Using fallback embedding model.") return self._load_fallback_model() self.model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir=self.cache_dir, run_opts={"device": self.device} ) self.model_loaded = True print("ECAPA-TDNN model loaded successfully!") return True except Exception as e: print(f"Error loading ECAPA-TDNN model: {e}") return self._load_fallback_model() def _load_fallback_model(self): """Fallback to a simple embedding model if SpeechBrain is not available""" print("Using fallback embedding model (simple spectral features)") self.model_loaded = True return True def embed_utterance(self, audio, sr=16000): """Extract speaker embedding from audio""" if not self.model_loaded: raise ValueError("Model not loaded. Call load_model() first.") try: if self.model is not None: # Use SpeechBrain model if isinstance(audio, np.ndarray): waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) else: waveform = audio.unsqueeze(0) if sr != 16000: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) with torch.no_grad(): embedding = self.model.encode_batch(waveform) return embedding.squeeze().cpu().numpy() else: # Use fallback method - simple spectral features return self._extract_simple_features(audio) except Exception as e: print(f"Error extracting embedding: {e}") return self._extract_simple_features(audio) def _extract_simple_features(self, audio): """Simple fallback feature extraction""" try: # Ensure audio is numpy array if isinstance(audio, torch.Tensor): audio = audio.numpy() # Basic spectral features as a fallback fft = np.fft.fft(audio) magnitude = np.abs(fft) # Take first 192 features to match expected embedding dimension features = magnitude[:self.embedding_dim] if len(magnitude) >= self.embedding_dim else np.pad(magnitude, (0, self.embedding_dim - len(magnitude))) # Normalize features = features / (np.linalg.norm(features) + 1e-8) return features.astype(np.float32) except Exception as e: print(f"Error in fallback feature extraction: {e}") return np.random.randn(self.embedding_dim).astype(np.float32) class AudioProcessor: """Processes audio data to extract speaker embeddings""" def __init__(self, encoder): self.encoder = encoder def extract_embedding(self, audio_int16): try: float_audio = audio_int16.astype(np.float32) / 32768.0 if np.abs(float_audio).max() > 1.0: float_audio = float_audio / np.abs(float_audio).max() embedding = self.encoder.embed_utterance(float_audio) return embedding except Exception as e: print(f"Embedding extraction error: {e}") return np.zeros(self.encoder.embedding_dim) class SpeakerChangeDetector: """Speaker change detector that supports a configurable number of speakers""" def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): self.embedding_dim = embedding_dim self.change_threshold = change_threshold self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) self.current_speaker = 0 self.previous_embeddings = [] self.last_change_time = time.time() self.mean_embeddings = [None] * self.max_speakers self.speaker_embeddings = [[] for _ in range(self.max_speakers)] self.last_similarity = 0.0 self.active_speakers = set([0]) def set_max_speakers(self, max_speakers): """Update the maximum number of speakers""" new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) if new_max < self.max_speakers: for speaker_id in list(self.active_speakers): if speaker_id >= new_max: self.active_speakers.discard(speaker_id) if self.current_speaker >= new_max: self.current_speaker = 0 if new_max > self.max_speakers: self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) else: self.mean_embeddings = self.mean_embeddings[:new_max] self.speaker_embeddings = self.speaker_embeddings[:new_max] self.max_speakers = new_max def set_change_threshold(self, threshold): """Update the threshold for detecting speaker changes""" self.change_threshold = max(0.1, min(threshold, 0.99)) def add_embedding(self, embedding, timestamp=None): """Add a new embedding and check if there's a speaker change""" current_time = timestamp or time.time() if not self.previous_embeddings: self.previous_embeddings.append(embedding) self.speaker_embeddings[self.current_speaker].append(embedding) if self.mean_embeddings[self.current_speaker] is None: self.mean_embeddings[self.current_speaker] = embedding.copy() return self.current_speaker, 1.0 current_mean = self.mean_embeddings[self.current_speaker] if current_mean is not None: similarity = 1.0 - cosine(embedding, current_mean) else: similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) self.last_similarity = similarity time_since_last_change = current_time - self.last_change_time is_speaker_change = False if time_since_last_change >= MIN_SEGMENT_DURATION: if similarity < self.change_threshold: best_speaker = self.current_speaker best_similarity = similarity for speaker_id in range(self.max_speakers): if speaker_id == self.current_speaker: continue speaker_mean = self.mean_embeddings[speaker_id] if speaker_mean is not None: speaker_similarity = 1.0 - cosine(embedding, speaker_mean) if speaker_similarity > best_similarity: best_similarity = speaker_similarity best_speaker = speaker_id if best_speaker != self.current_speaker: is_speaker_change = True self.current_speaker = best_speaker elif len(self.active_speakers) < self.max_speakers: for new_id in range(self.max_speakers): if new_id not in self.active_speakers: is_speaker_change = True self.current_speaker = new_id self.active_speakers.add(new_id) break if is_speaker_change: self.last_change_time = current_time self.previous_embeddings.append(embedding) if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: self.previous_embeddings.pop(0) self.speaker_embeddings[self.current_speaker].append(embedding) self.active_speakers.add(self.current_speaker) if len(self.speaker_embeddings[self.current_speaker]) > 30: self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] if self.speaker_embeddings[self.current_speaker]: self.mean_embeddings[self.current_speaker] = np.mean( self.speaker_embeddings[self.current_speaker], axis=0 ) return self.current_speaker, similarity def get_color_for_speaker(self, speaker_id): """Return color for speaker ID""" if 0 <= speaker_id < len(SPEAKER_COLORS): return SPEAKER_COLORS[speaker_id] return "#FFFFFF" def get_status_info(self): """Return status information about the speaker change detector""" speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] return { "current_speaker": self.current_speaker, "speaker_counts": speaker_counts, "active_speakers": len(self.active_speakers), "max_speakers": self.max_speakers, "last_similarity": self.last_similarity, "threshold": self.change_threshold } class RealtimeSpeakerDiarization: def __init__(self): self.encoder = None self.audio_processor = None self.speaker_detector = None self.recorder = None self.sentence_queue = queue.Queue() self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.last_realtime_text = "" self.is_running = False self.change_threshold = DEFAULT_CHANGE_THRESHOLD self.max_speakers = DEFAULT_MAX_SPEAKERS self.current_conversation = "" self.audio_buffer = [] def initialize_models(self): """Initialize the speaker encoder model""" try: device_str = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device_str}") self.encoder = SpeechBrainEncoder(device=device_str) success = self.encoder.load_model() if success: self.audio_processor = AudioProcessor(self.encoder) self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) print("Speaker diarization model loaded successfully!") return True else: print("Failed to load speaker diarization model") return False except Exception as e: print(f"Model initialization error: {e}") return False def live_text_detected(self, text): """Callback for real-time transcription updates""" text = text.strip() if text: sentence_delimiters = '.?!。' prob_sentence_end = ( len(self.last_realtime_text) > 0 and text[-1] in sentence_delimiters and self.last_realtime_text[-1] in sentence_delimiters ) self.last_realtime_text = text if prob_sentence_end and FAST_SENTENCE_END: if self.recorder: self.recorder.stop() elif prob_sentence_end: if self.recorder: self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0] else: if self.recorder: self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1] def process_final_text(self, text): """Process final transcribed text with speaker embedding""" text = text.strip() if text: try: if self.recorder and hasattr(self.recorder, 'last_transcription_bytes'): bytes_data = self.recorder.last_transcription_bytes self.sentence_queue.put((text, bytes_data)) else: # Use audio buffer as fallback if self.audio_buffer: audio_data = np.concatenate(self.audio_buffer) bytes_data = audio_data.tobytes() self.sentence_queue.put((text, bytes_data)) self.audio_buffer = [] # Clear buffer after use self.pending_sentences.append(text) except Exception as e: print(f"Error processing final text: {e}") def process_sentence_queue(self): """Process sentences in the queue for speaker detection""" while self.is_running: try: text, bytes_data = self.sentence_queue.get(timeout=1) # Convert audio data to int16 audio_int16 = np.frombuffer(bytes_data, dtype=np.int16) # Extract speaker embedding speaker_embedding = self.audio_processor.extract_embedding(audio_int16) # Store sentence and embedding self.full_sentences.append((text, speaker_embedding)) # Fill in missing speaker assignments while len(self.sentence_speakers) < len(self.full_sentences) - 1: self.sentence_speakers.append(0) # Detect speaker changes speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) self.sentence_speakers.append(speaker_id) # Remove from pending if text in self.pending_sentences: self.pending_sentences.remove(text) # Update conversation display self.current_conversation = self.get_formatted_conversation() except queue.Empty: continue except Exception as e: print(f"Error processing sentence: {e}") def start_recording(self): """Start the recording and transcription process""" if self.encoder is None: return "Please initialize models first!" try: # Check if RealtimeSTT is available try: from RealtimeSTT import AudioToTextRecorder recorder_available = True except ImportError: print("RealtimeSTT not available. Using simulated audio processing.") recorder_available = False if recorder_available: # Setup recorder configuration recorder_config = { 'spinner': False, 'use_microphone': True, 'model': FINAL_TRANSCRIPTION_MODEL, 'language': TRANSCRIPTION_LANGUAGE, 'silero_sensitivity': SILERO_SENSITIVITY, 'webrtc_sensitivity': WEBRTC_SENSITIVITY, 'post_speech_silence_duration': SILENCE_THRESHS[1], 'min_length_of_recording': MIN_LENGTH_OF_RECORDING, 'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION, 'min_gap_between_recordings': 0, 'enable_realtime_transcription': True, 'realtime_processing_pause': 0, 'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL, 'on_realtime_transcription_update': self.live_text_detected, 'beam_size': FINAL_BEAM_SIZE, 'beam_size_realtime': REALTIME_BEAM_SIZE, 'buffer_size': BUFFER_SIZE, 'sample_rate': SAMPLE_RATE, } self.recorder = AudioToTextRecorder(**recorder_config) # Start sentence processing thread self.is_running = True self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True) self.sentence_thread.start() if recorder_available: # Start transcription thread self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True) self.transcription_thread.start() return "Recording started successfully! Please speak into your microphone." else: return "Simulation mode active. Speaker diarization ready for audio input." except Exception as e: return f"Error starting recording: {e}" def run_transcription(self): """Run the transcription loop""" try: while self.is_running and self.recorder: self.recorder.text(self.process_final_text) except Exception as e: print(f"Transcription error: {e}") def stop_recording(self): """Stop the recording process""" self.is_running = False if self.recorder: try: self.recorder.stop() except: pass return "Recording stopped!" def clear_conversation(self): """Clear all conversation data""" self.full_sentences = [] self.sentence_speakers = [] self.pending_sentences = [] self.displayed_text = "" self.last_realtime_text = "" self.current_conversation = "Conversation cleared!" self.audio_buffer = [] if self.speaker_detector: self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) return "Conversation cleared!" def update_settings(self, threshold, max_speakers): """Update speaker detection settings""" self.change_threshold = threshold self.max_speakers = max_speakers if self.speaker_detector: self.speaker_detector.set_change_threshold(threshold) self.speaker_detector.set_max_speakers(max_speakers) return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" def get_formatted_conversation(self): """Get the formatted conversation with speaker colors""" try: sentences_with_style = [] # Process completed sentences for i, sentence in enumerate(self.full_sentences): sentence_text, _ = sentence if i >= len(self.sentence_speakers): color = "#FFFFFF" speaker_name = "Unknown" else: speaker_id = self.sentence_speakers[i] color = self.speaker_detector.get_color_for_speaker(speaker_id) speaker_name = f"Speaker {speaker_id + 1}" sentences_with_style.append( f'{speaker_name}: {sentence_text}') # Add pending sentences for pending_sentence in self.pending_sentences: sentences_with_style.append( f'Processing: {pending_sentence}') if sentences_with_style: return "

".join(sentences_with_style) else: return "Waiting for speech input..." except Exception as e: return f"Error formatting conversation: {e}" def get_status_info(self): """Get current status information""" if not self.speaker_detector: return "Speaker detector not initialized" try: status = self.speaker_detector.get_status_info() status_lines = [ f"**Current Speaker:** {status['current_speaker'] + 1}", f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", f"**Last Similarity:** {status['last_similarity']:.3f}", f"**Change Threshold:** {status['threshold']:.2f}", f"**Total Sentences:** {len(self.full_sentences)}", "", "**Speaker Segment Counts:**" ] for i in range(status['max_speakers']): color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") return "\n".join(status_lines) except Exception as e: return f"Error getting status: {e}" def process_audio(self, audio_data): """Process audio data from external sources""" if not self.is_running: return try: # Handle different audio data formats if isinstance(audio_data, tuple) and len(audio_data) == 2: sample_rate, audio_array = audio_data else: audio_array = audio_data sample_rate = SAMPLE_RATE # Convert to int16 format if audio_array.dtype != np.int16: if audio_array.dtype == np.float32 or audio_array.dtype == np.float64: audio_array = (audio_array * 32767).astype(np.int16) else: audio_array = audio_array.astype(np.int16) # Store in buffer for later processing self.audio_buffer.append(audio_array) # Process if we have enough audio data if len(self.audio_buffer) > 10: # Process every ~0.5 seconds of audio combined_audio = np.concatenate(self.audio_buffer) # Simulate transcription for demonstration if len(combined_audio) > SAMPLE_RATE: # At least 1 second of audio # In a real implementation, this would be transcribed text demo_text = f"Sample speech segment {len(self.full_sentences) + 1}" self.process_final_text(demo_text) self.audio_buffer = [] # Clear buffer except Exception as e: print(f"Error processing audio: {e}") # Global instance diarization_system = RealtimeSpeakerDiarization() def initialize_system(): """Initialize the diarization system""" success = diarization_system.initialize_models() if success: return "✅ System initialized successfully! Models loaded." else: return "❌ Failed to initialize system. Please check the logs." def start_recording(): """Start recording and transcription""" return diarization_system.start_recording() def stop_recording(): """Stop recording and transcription""" return diarization_system.stop_recording() def clear_conversation(): """Clear the conversation""" return diarization_system.clear_conversation() def update_settings(threshold, max_speakers): """Update system settings""" return diarization_system.update_settings(threshold, max_speakers) def get_conversation(): """Get the current conversation""" return diarization_system.get_formatted_conversation() def get_status(): """Get system status""" return diarization_system.get_status_info() # Create Gradio interface def create_interface(): with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface: gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization") gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.") with gr.Row(): with gr.Column(scale=2): # Audio input component audio_input = gr.Audio( label="đŸŽ™ī¸ Audio Input", sources=["microphone"], type="numpy", streaming=True ) # Main conversation display conversation_output = gr.HTML( value="Click 'Initialize System' to start...", label="Live Conversation" ) # Control buttons with gr.Row(): init_btn = gr.Button("🔧 Initialize System", variant="secondary") start_btn = gr.Button("đŸŽ™ī¸ Start Recording", variant="primary", interactive=False) stop_btn = gr.Button("âšī¸ Stop Recording", variant="stop", interactive=False) clear_btn = gr.Button("đŸ—‘ī¸ Clear Conversation", interactive=False) # Status display status_output = gr.Textbox( label="System Status", value="System not initialized", lines=8, interactive=False ) with gr.Column(scale=1): # Settings panel gr.Markdown("## âš™ī¸ Settings") threshold_slider = gr.Slider( minimum=0.1, maximum=0.95, step=0.05, value=DEFAULT_CHANGE_THRESHOLD, label="Speaker Change Sensitivity", info="Lower values = more sensitive to speaker changes" ) max_speakers_slider = gr.Slider( minimum=2, maximum=ABSOLUTE_MAX_SPEAKERS, step=1, value=DEFAULT_MAX_SPEAKERS, label="Maximum Number of Speakers" ) update_settings_btn = gr.Button("Update Settings") # Instructions gr.Markdown("## 📝 Instructions") gr.Markdown(""" 1. Click **Initialize System** to load models 2. Click **Start Recording** to begin processing 3. Use the microphone input above to record audio 4. Watch real-time transcription with speaker labels 5. Adjust settings as needed """) # Speaker color legend gr.Markdown("## 🎨 Speaker Colors") color_info = [] for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)): color_info.append(f'■ Speaker {i+1} ({name})') gr.HTML("
".join(color_info[:DEFAULT_MAX_SPEAKERS])) # Audio processing function def process_audio_stream(audio_data): if audio_data is not None and diarization_system.is_running: diarization_system.process_audio(audio_data) return diarization_system.get_formatted_conversation() return None # Auto-refresh conversation and status def refresh_display(): return diarization_system.get_formatted_conversation(), diarization_system.get_status_info() # Event handlers def on_initialize(): result = initialize_system() if "successfully" in result: return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=True), # clear_btn get_conversation(), get_status() ) else: return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=False), # clear_btn get_conversation(), get_status() ) def on_start(): result = start_recording() return ( result, gr.update(interactive=False), # start_btn gr.update(interactive=True), # stop_btn ) def on_stop(): result = stop_recording() return ( result, gr.update(interactive=True), # start_btn gr.update(interactive=False), # stop_btn ) # Connect event handlers init_btn.click( on_initialize, outputs=[status_output, start_btn, clear_btn, conversation_output, status_output] ) start_btn.click( on_start, outputs=[status_output, start_btn, stop_btn] ) stop_btn.click( on_stop, outputs=[status_output, start_btn, stop_btn] ) clear_btn.click( clear_conversation, outputs=[status_output] ) update_settings_btn.click( update_settings, inputs=[threshold_slider, max_speakers_slider], outputs=[status_output] ) # Connect audio input to processing function audio_input.stream( process_audio_stream, inputs=[audio_input], outputs=[conversation_output] ) # Auto-refresh every 2 seconds when recording refresh_timer = gr.Timer(2.0) refresh_timer.tick( refresh_display, outputs=[conversation_output, status_output] ) return interface # 1) Create FastAPI app app = FastAPI() # 2) Create Gradio interface gradio_interface = create_interface() # 3) Mount Gradio onto FastAPI at root app = gr.mount_gradio_app(app, gradio_interface, path="/") # 4) Local dev via uvicorn; HF Spaces will auto-detect 'app' and ignore this if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)