File size: 12,700 Bytes
97a4ae5
e1de00e
3a4cb0f
e1de00e
 
3a4cb0f
 
 
 
 
a905808
7f7357a
 
 
 
3a4cb0f
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
e1de00e
3a4cb0f
 
 
 
 
e1de00e
3a4cb0f
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
e1de00e
3a4cb0f
 
e1de00e
3a4cb0f
 
 
 
 
 
e1de00e
3a4cb0f
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
b9d6018
3a4cb0f
 
 
 
 
e1de00e
3a4cb0f
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
e1de00e
3a4cb0f
 
e1de00e
3a4cb0f
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54ccef4
3a4cb0f
 
 
 
 
 
 
 
 
 
17cb251
3a4cb0f
 
 
 
 
 
 
 
e1de00e
3a4cb0f
 
 
e1de00e
3a4cb0f
 
7f7357a
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7357a
3a4cb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7357a
3a4cb0f
 
 
 
b45f016
 
3a4cb0f
b45f016
3a4cb0f
 
 
 
 
 
 
7f7357a
3a4cb0f
b9d6018
3a4cb0f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import gradio as gr
import asyncio
import websockets
import json
import logging
import time
from typing import Dict, Any, Optional
import threading
from queue import Queue
import base64

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TranscriptionInterface:
    """Interface for real-time transcription and speaker diarization"""
    
    def __init__(self):
        self.connected_clients = set()
        self.message_queue = Queue()
        self.is_running = False
        self.websocket_server = None
        self.current_transcript = ""
        self.conversation_history = []
        
    async def handle_client(self, websocket, path):
        """Handle WebSocket client connections"""
        client_id = f"client_{int(time.time())}"
        self.connected_clients.add(websocket)
        
        logger.info(f"Client connected: {client_id}. Total clients: {len(self.connected_clients)}")
        
        try:
            # Send connection confirmation
            await websocket.send(json.dumps({
                "type": "connection",
                "status": "connected",
                "timestamp": time.time(),
                "client_id": client_id
            }))
            
            async for message in websocket:
                try:
                    if isinstance(message, bytes):
                        # Handle binary audio data
                        await self.process_audio_chunk(message, websocket)
                    else:
                        # Handle text messages
                        data = json.loads(message)
                        await self.handle_message(data, websocket)
                        
                except json.JSONDecodeError:
                    logger.warning(f"Invalid JSON received from client: {message}")
                except Exception as e:
                    logger.error(f"Error processing message: {e}")
                    
        except websockets.exceptions.ConnectionClosed:
            logger.info(f"Client {client_id} disconnected")
        except Exception as e:
            logger.error(f"Client handler error: {e}")
        finally:
            self.connected_clients.discard(websocket)
            logger.info(f"Client removed. Remaining clients: {len(self.connected_clients)}")
    
    async def process_audio_chunk(self, audio_data: bytes, websocket):
        """Process incoming audio data"""
        try:
            # Import inference functions (assuming they exist in your setup)
            from inference import process_audio_for_transcription
            
            # Process the audio chunk
            result = await process_audio_for_transcription(audio_data)
            
            if result:
                # Broadcast result to all clients
                await self.broadcast_result({
                    "type": "processing_result",
                    "timestamp": time.time(),
                    "data": result
                })
                
                # Update conversation history
                if "transcription" in result:
                    self.update_conversation(result)
                    
        except ImportError:
            logger.warning("Inference module not found - audio processing disabled")
        except Exception as e:
            logger.error(f"Error processing audio chunk: {e}")
            await websocket.send(json.dumps({
                "type": "error",
                "message": f"Audio processing error: {str(e)}",
                "timestamp": time.time()
            }))
    
    async def handle_message(self, data: Dict[str, Any], websocket):
        """Handle non-audio messages from clients"""
        message_type = data.get("type", "unknown")
        
        if message_type == "config":
            # Handle configuration updates
            logger.info(f"Configuration update: {data}")
            
        elif message_type == "request_history":
            # Send conversation history to client
            await websocket.send(json.dumps({
                "type": "conversation_history",
                "data": self.conversation_history,
                "timestamp": time.time()
            }))
            
        elif message_type == "clear_history":
            # Clear conversation history
            self.conversation_history = []
            self.current_transcript = ""
            await self.broadcast_result({
                "type": "conversation_update",
                "action": "cleared",
                "timestamp": time.time()
            })
            
        else:
            logger.warning(f"Unknown message type: {message_type}")
    
    async def broadcast_result(self, result: Dict[str, Any]):
        """Broadcast results to all connected clients"""
        if not self.connected_clients:
            return
            
        message = json.dumps(result)
        disconnected = set()
        
        for client in self.connected_clients.copy():
            try:
                await client.send(message)
            except Exception as e:
                logger.warning(f"Failed to send to client: {e}")
                disconnected.add(client)
        
        # Clean up disconnected clients
        for client in disconnected:
            self.connected_clients.discard(client)
    
    def update_conversation(self, result: Dict[str, Any]):
        """Update conversation history with new transcription results"""
        if "transcription" in result:
            transcript_data = {
                "timestamp": time.time(),
                "text": result["transcription"],
                "speaker": result.get("speaker", "Unknown"),
                "confidence": result.get("confidence", 0.0)
            }
            
            self.conversation_history.append(transcript_data)
            
            # Keep only last 100 entries to prevent memory issues
            if len(self.conversation_history) > 100:
                self.conversation_history = self.conversation_history[-100:]
    
    async def start_websocket_server(self, host="0.0.0.0", port=7860):
        """Start the WebSocket server"""
        try:
            self.websocket_server = await websockets.serve(
                self.handle_client,
                host,
                port,
                path="/ws_inference"
            )
            self.is_running = True
            logger.info(f"WebSocket server started on {host}:{port}")
            
            # Keep server running
            await self.websocket_server.wait_closed()
            
        except Exception as e:
            logger.error(f"WebSocket server error: {e}")
            self.is_running = False
    
    def get_status(self):
        """Get current status information"""
        return {
            "connected_clients": len(self.connected_clients),
            "is_running": self.is_running,
            "conversation_entries": len(self.conversation_history),
            "last_activity": time.time()
        }

# Initialize the transcription interface
transcription_interface = TranscriptionInterface()

def create_gradio_interface():
    """Create the Gradio interface"""
    
    def get_server_status():
        """Get server status for display"""
        status = transcription_interface.get_status()
        return f"""
        **Server Status:**
        - WebSocket Server: {'Running' if status['is_running'] else 'Stopped'}
        - Connected Clients: {status['connected_clients']}
        - Conversation Entries: {status['conversation_entries']}
        - Last Activity: {time.ctime(status['last_activity'])}
        """
    
    def get_conversation_history():
        """Get formatted conversation history"""
        if not transcription_interface.conversation_history:
            return "No conversation history available."
        
        formatted_history = []
        for entry in transcription_interface.conversation_history[-10:]:  # Show last 10 entries
            timestamp = time.ctime(entry['timestamp'])
            speaker = entry.get('speaker', 'Unknown')
            text = entry.get('text', '')
            confidence = entry.get('confidence', 0.0)
            
            formatted_history.append(f"**[{timestamp}] {speaker}** (confidence: {confidence:.2f})\n{text}\n")
        
        return "\n".join(formatted_history)
    
    def clear_conversation():
        """Clear conversation history"""
        transcription_interface.conversation_history = []
        transcription_interface.current_transcript = ""
        return "Conversation history cleared."
    
    # Create Gradio interface
    with gr.Blocks(title="Real-time Audio Transcription & Speaker Diarization") as demo:
        gr.Markdown("# Real-time Audio Transcription & Speaker Diarization")
        gr.Markdown("This Hugging Face Space provides WebSocket endpoints for real-time audio processing.")
        
        with gr.Tab("Server Status"):
            status_display = gr.Markdown(get_server_status())
            refresh_btn = gr.Button("Refresh Status")
            refresh_btn.click(get_server_status, outputs=status_display)
        
        with gr.Tab("Live Transcription"):
            gr.Markdown("### Live Conversation")
            conversation_display = gr.Markdown(get_conversation_history())
            
            with gr.Row():
                refresh_conv_btn = gr.Button("Refresh Conversation")
                clear_conv_btn = gr.Button("Clear History", variant="secondary")
            
            refresh_conv_btn.click(get_conversation_history, outputs=conversation_display)
            clear_conv_btn.click(clear_conversation, outputs=conversation_display)
        
        with gr.Tab("WebSocket Info"):
            gr.Markdown("""
            ### WebSocket Endpoint
            Connect to this Space's WebSocket endpoint for real-time audio processing:
            
            **WebSocket URL:** `wss://your-space-name.hf.space/ws_inference`
            
            ### Message Format
            
            **Audio Data:** Send raw audio bytes directly to the WebSocket
            
            **Text Messages:** JSON format
            ```json
            {
                "type": "config",
                "settings": {
                    "language": "en",
                    "enable_diarization": true
                }
            }
            ```
            
            ### Response Format
            ```json
            {
                "type": "processing_result",
                "timestamp": 1234567890.123,
                "data": {
                    "transcription": "Hello world",
                    "speaker": "Speaker_1",
                    "confidence": 0.95
                }
            }
            ```
            """)
        
        with gr.Tab("API Documentation"):
            gr.Markdown("""
            ### Available Endpoints
            
            - **WebSocket:** `/ws_inference` - Main endpoint for real-time audio processing
            - **HTTP:** `/health` - Check server health status
            - **HTTP:** `/stats` - Get detailed statistics
            
            ### Integration Example
            
            ```javascript
            const ws = new WebSocket('wss://your-space-name.hf.space/ws_inference');
            
            ws.onopen = function() {
                console.log('Connected to transcription service');
            };
            
            ws.onmessage = function(event) {
                const data = JSON.parse(event.data);
                if (data.type === 'processing_result') {
                    console.log('Transcription:', data.data.transcription);
                    console.log('Speaker:', data.data.speaker);
                }
            };
            
            // Send audio data
            ws.send(audioBuffer);
            ```
            """)
    
    return demo

def run_websocket_server():
    """Run the WebSocket server in a separate thread"""
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    
    try:
        loop.run_until_complete(transcription_interface.start_websocket_server())
    except Exception as e:
        logger.error(f"WebSocket server thread error: {e}")
    finally:
        loop.close()

# Start WebSocket server in background thread
websocket_thread = threading.Thread(target=run_websocket_server, daemon=True)
websocket_thread.start()

# Create and launch Gradio interface
if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )