janmariakowalski commited on
Commit
c583bcb
·
verified ·
1 Parent(s): 415b63a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -21,7 +21,7 @@ except ImportError:
21
  # --- Configuration ---
22
  # Model path is set to sojka
23
  MODEL_PATH = os.getenv("MODEL_PATH", "AndromedaPL/sojka")
24
- TOKENIZER_PATH = os.getenv("MODEL_PATH", "sdadas/mmlw-roberta-base")
25
 
26
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
27
  LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
@@ -45,9 +45,10 @@ logger = logging.getLogger(__name__)
45
 
46
  def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
47
  """Load the trained model and tokenizer"""
48
- logger.info(f"Loading model from {model_path}")
49
 
50
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)
 
51
 
52
  if tokenizer.pad_token is None:
53
  if tokenizer.eos_token:
@@ -57,6 +58,8 @@ def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str)
57
 
58
  tokenizer.truncation_side = "right"
59
 
 
 
60
  model_load_kwargs = {
61
  "torch_dtype": torch.float16 if device == 'cuda' else torch.float32,
62
  "device_map": 'auto' if device == 'cuda' else None,
@@ -92,7 +95,7 @@ try:
92
  model, tokenizer = load_model_and_tokenizer(MODEL_PATH, TOKENIZER_PATH, DEVICE)
93
  model_loaded = True
94
  except Exception as e:
95
- logger.error(f"FATAL: Failed to load the model from {MODEL_PATH}: {e}")
96
  model, tokenizer, model_loaded = None, None, False
97
 
98
  def predict(text: str) -> Dict[str, Any]:
 
21
  # --- Configuration ---
22
  # Model path is set to sojka
23
  MODEL_PATH = os.getenv("MODEL_PATH", "AndromedaPL/sojka")
24
+ TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", "sdadas/mmlw-roberta-base")
25
 
26
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
27
  LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
 
45
 
46
  def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
47
  """Load the trained model and tokenizer"""
48
+ logger.info(f"Loading tokenizer from {tokenizer_path}")
49
 
50
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)
51
+ logger.info(f"Tokenizer loaded: {tokenizer.name_or_path}")
52
 
53
  if tokenizer.pad_token is None:
54
  if tokenizer.eos_token:
 
58
 
59
  tokenizer.truncation_side = "right"
60
 
61
+ logger.info(f"Loading model from {model_path}")
62
+
63
  model_load_kwargs = {
64
  "torch_dtype": torch.float16 if device == 'cuda' else torch.float32,
65
  "device_map": 'auto' if device == 'cuda' else None,
 
95
  model, tokenizer = load_model_and_tokenizer(MODEL_PATH, TOKENIZER_PATH, DEVICE)
96
  model_loaded = True
97
  except Exception as e:
98
+ logger.error(f"FATAL: Failed to load the model from {MODEL_PATH} or tokenizer from {TOKENIZER_PATH}: {e}", e)
99
  model, tokenizer, model_loaded = None, None, False
100
 
101
  def predict(text: str) -> Dict[str, Any]: