Andy1621 commited on
Commit
ece2f26
·
1 Parent(s): 5dd1b26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -9
app.py CHANGED
@@ -27,6 +27,7 @@ imagenet_id_to_classname = {}
27
  for k, v in imagenet_classnames.items():
28
  imagenet_id_to_classname[k] = v[1]
29
 
 
30
  def inference(img):
31
  image = img
32
  image_transform = T.Compose(
@@ -39,28 +40,24 @@ def inference(img):
39
  )
40
  image = image_transform(image)
41
 
42
- # The model expects inputs of shape: B x C x T x H x W
43
  image = image.unsqueeze(0)
44
 
45
  prediction = model(image)
46
- prediction = F.softmax(prediction, dim=1)
47
 
48
- return {imagenet_id_to_classname[str(i)]: float(prediction[0][i]) for i in range(1000)}
49
 
 
50
  inputs = gr.inputs.Image(type='pil')
51
- # outputs = gr.outputs.Textbox(label="Output")
52
  label = gr.outputs.Label(num_top_classes=5)
53
 
54
  title = "UniFormer-S"
55
-
56
  description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
57
-
58
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>"
59
 
60
-
61
  gr.Interface(
62
  inference, inputs, outputs=label,
63
- title=title, description=description,
64
- article=article,
65
  examples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]
66
  ).launch(enable_queue=True, cache_examples=True)
 
27
  for k, v in imagenet_classnames.items():
28
  imagenet_id_to_classname[k] = v[1]
29
 
30
+
31
  def inference(img):
32
  image = img
33
  image_transform = T.Compose(
 
40
  )
41
  image = image_transform(image)
42
 
43
+ # The model expects inputs of shape: B x C x H x W
44
  image = image.unsqueeze(0)
45
 
46
  prediction = model(image)
47
+ prediction = F.softmax(prediction, dim=1).flatten()
48
 
49
+ return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
50
 
51
+
52
  inputs = gr.inputs.Image(type='pil')
 
53
  label = gr.outputs.Label(num_top_classes=5)
54
 
55
  title = "UniFormer-S"
 
56
  description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
 
57
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>"
58
 
 
59
  gr.Interface(
60
  inference, inputs, outputs=label,
61
+ title=title, description=description, article=article,
 
62
  examples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]
63
  ).launch(enable_queue=True, cache_examples=True)