Spaces:
Build error
Build error
| from collections.abc import Sequence | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from mmcv.parallel import DataContainer as DC | |
| from ..builder import PIPELINES | |
| def to_tensor(data): | |
| """Convert objects of various python types to :obj:`torch.Tensor`. | |
| Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |
| :class:`Sequence`, :class:`int` and :class:`float`. | |
| Args: | |
| data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to | |
| be converted. | |
| """ | |
| if isinstance(data, torch.Tensor): | |
| return data | |
| elif isinstance(data, np.ndarray): | |
| return torch.from_numpy(data) | |
| elif isinstance(data, Sequence) and not mmcv.is_str(data): | |
| return torch.tensor(data) | |
| elif isinstance(data, int): | |
| return torch.LongTensor([data]) | |
| elif isinstance(data, float): | |
| return torch.FloatTensor([data]) | |
| else: | |
| raise TypeError(f'type {type(data)} cannot be converted to tensor.') | |
| class ToTensor(object): | |
| """Convert some results to :obj:`torch.Tensor` by given keys. | |
| Args: | |
| keys (Sequence[str]): Keys that need to be converted to Tensor. | |
| """ | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| """Call function to convert data in results to :obj:`torch.Tensor`. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data converted | |
| to :obj:`torch.Tensor`. | |
| """ | |
| for key in self.keys: | |
| results[key] = to_tensor(results[key]) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class ImageToTensor(object): | |
| """Convert image to :obj:`torch.Tensor` by given keys. | |
| The dimension order of input image is (H, W, C). The pipeline will convert | |
| it to (C, H, W). If only 2 dimension (H, W) is given, the output would be | |
| (1, H, W). | |
| Args: | |
| keys (Sequence[str]): Key of images to be converted to Tensor. | |
| """ | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| """Call function to convert image in results to :obj:`torch.Tensor` and | |
| transpose the channel order. | |
| Args: | |
| results (dict): Result dict contains the image data to convert. | |
| Returns: | |
| dict: The result dict contains the image converted | |
| to :obj:`torch.Tensor` and transposed to (C, H, W) order. | |
| """ | |
| for key in self.keys: | |
| img = results[key] | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| results[key] = to_tensor(img.transpose(2, 0, 1)) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class Transpose(object): | |
| """Transpose some results by given keys. | |
| Args: | |
| keys (Sequence[str]): Keys of results to be transposed. | |
| order (Sequence[int]): Order of transpose. | |
| """ | |
| def __init__(self, keys, order): | |
| self.keys = keys | |
| self.order = order | |
| def __call__(self, results): | |
| """Call function to transpose the channel order of data in results. | |
| Args: | |
| results (dict): Result dict contains the data to transpose. | |
| Returns: | |
| dict: The result dict contains the data transposed to \ | |
| ``self.order``. | |
| """ | |
| for key in self.keys: | |
| results[key] = results[key].transpose(self.order) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(keys={self.keys}, order={self.order})' | |
| class ToDataContainer(object): | |
| """Convert results to :obj:`mmcv.DataContainer` by given fields. | |
| Args: | |
| fields (Sequence[dict]): Each field is a dict like | |
| ``dict(key='xxx', **kwargs)``. The ``key`` in result will | |
| be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. | |
| Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
| dict(key='gt_labels'))``. | |
| """ | |
| def __init__(self, | |
| fields=(dict(key='img', stack=True), dict(key='gt_bboxes'), | |
| dict(key='gt_labels'))): | |
| self.fields = fields | |
| def __call__(self, results): | |
| """Call function to convert data in results to | |
| :obj:`mmcv.DataContainer`. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data converted to \ | |
| :obj:`mmcv.DataContainer`. | |
| """ | |
| for field in self.fields: | |
| field = field.copy() | |
| key = field.pop('key') | |
| results[key] = DC(results[key], **field) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(fields={self.fields})' | |
| class DefaultFormatBundle(object): | |
| """Default formatting bundle. | |
| It simplifies the pipeline of formatting common fields, including "img", | |
| "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". | |
| These fields are formatted as follows. | |
| - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) | |
| - proposals: (1)to tensor, (2)to DataContainer | |
| - gt_bboxes: (1)to tensor, (2)to DataContainer | |
| - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer | |
| - gt_labels: (1)to tensor, (2)to DataContainer | |
| - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) | |
| - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ | |
| (3)to DataContainer (stack=True) | |
| """ | |
| def __call__(self, results): | |
| """Call function to transform and format common fields in results. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data that is formatted with \ | |
| default bundle. | |
| """ | |
| if 'img' in results: | |
| img = results['img'] | |
| # add default meta keys | |
| results = self._add_default_meta_keys(results) | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
| results['img'] = DC(to_tensor(img), stack=True) | |
| for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']: | |
| if key not in results: | |
| continue | |
| results[key] = DC(to_tensor(results[key])) | |
| if 'gt_masks' in results: | |
| results['gt_masks'] = DC(results['gt_masks'], cpu_only=True) | |
| if 'gt_semantic_seg' in results: | |
| results['gt_semantic_seg'] = DC( | |
| to_tensor(results['gt_semantic_seg'][None, ...]), stack=True) | |
| return results | |
| def _add_default_meta_keys(self, results): | |
| """Add default meta keys. | |
| We set default meta keys including `pad_shape`, `scale_factor` and | |
| `img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and | |
| `Pad` are implemented during the whole pipeline. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| results (dict): Updated result dict contains the data to convert. | |
| """ | |
| img = results['img'] | |
| results.setdefault('pad_shape', img.shape) | |
| results.setdefault('scale_factor', 1.0) | |
| num_channels = 1 if len(img.shape) < 3 else img.shape[2] | |
| results.setdefault( | |
| 'img_norm_cfg', | |
| dict( | |
| mean=np.zeros(num_channels, dtype=np.float32), | |
| std=np.ones(num_channels, dtype=np.float32), | |
| to_rgb=False)) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ | |
| class Collect(object): | |
| """Collect data from the loader relevant to the specific task. | |
| This is usually the last stage of the data loader pipeline. Typically keys | |
| is set to some subset of "img", "proposals", "gt_bboxes", | |
| "gt_bboxes_ignore", "gt_labels", and/or "gt_masks". | |
| The "img_meta" item is always populated. The contents of the "img_meta" | |
| dictionary depends on "meta_keys". By default this includes: | |
| - "img_shape": shape of the image input to the network as a tuple \ | |
| (h, w, c). Note that images may be zero padded on the \ | |
| bottom/right if the batch tensor is larger than this shape. | |
| - "scale_factor": a float indicating the preprocessing scale | |
| - "flip": a boolean indicating if image flip transform was used | |
| - "filename": path to the image file | |
| - "ori_shape": original shape of the image as a tuple (h, w, c) | |
| - "pad_shape": image shape after padding | |
| - "img_norm_cfg": a dict of normalization information: | |
| - mean - per channel mean subtraction | |
| - std - per channel std divisor | |
| - to_rgb - bool indicating if bgr was converted to rgb | |
| Args: | |
| keys (Sequence[str]): Keys of results to be collected in ``data``. | |
| meta_keys (Sequence[str], optional): Meta keys to be converted to | |
| ``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
| Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', | |
| 'pad_shape', 'scale_factor', 'flip', 'flip_direction', | |
| 'img_norm_cfg')`` | |
| """ | |
| def __init__(self, | |
| keys, | |
| meta_keys=('filename', 'ori_filename', 'ori_shape', | |
| 'img_shape', 'pad_shape', 'scale_factor', 'flip', | |
| 'flip_direction', 'img_norm_cfg')): | |
| self.keys = keys | |
| self.meta_keys = meta_keys | |
| def __call__(self, results): | |
| """Call function to collect keys in results. The keys in ``meta_keys`` | |
| will be converted to :obj:mmcv.DataContainer. | |
| Args: | |
| results (dict): Result dict contains the data to collect. | |
| Returns: | |
| dict: The result dict contains the following keys | |
| - keys in``self.keys`` | |
| - ``img_metas`` | |
| """ | |
| data = {} | |
| img_meta = {} | |
| for key in self.meta_keys: | |
| img_meta[key] = results[key] | |
| data['img_metas'] = DC(img_meta, cpu_only=True) | |
| for key in self.keys: | |
| data[key] = results[key] | |
| return data | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(keys={self.keys}, meta_keys={self.meta_keys})' | |
| class WrapFieldsToLists(object): | |
| """Wrap fields of the data dictionary into lists for evaluation. | |
| This class can be used as a last step of a test or validation | |
| pipeline for single image evaluation or inference. | |
| Example: | |
| >>> test_pipeline = [ | |
| >>> dict(type='LoadImageFromFile'), | |
| >>> dict(type='Normalize', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375], | |
| to_rgb=True), | |
| >>> dict(type='Pad', size_divisor=32), | |
| >>> dict(type='ImageToTensor', keys=['img']), | |
| >>> dict(type='Collect', keys=['img']), | |
| >>> dict(type='WrapFieldsToLists') | |
| >>> ] | |
| """ | |
| def __call__(self, results): | |
| """Call function to wrap fields into lists. | |
| Args: | |
| results (dict): Result dict contains the data to wrap. | |
| Returns: | |
| dict: The result dict where value of ``self.keys`` are wrapped \ | |
| into list. | |
| """ | |
| # Wrap dict fields into lists | |
| for key, val in results.items(): | |
| results[key] = [val] | |
| return results | |
| def __repr__(self): | |
| return f'{self.__class__.__name__}()' | |