Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ..builder import LOSSES | |
| from .utils import get_class_weight, weight_reduce_loss | |
| def cross_entropy(pred, | |
| label, | |
| weight=None, | |
| class_weight=None, | |
| reduction='mean', | |
| avg_factor=None, | |
| ignore_index=-100): | |
| """The wrapper function for :func:`F.cross_entropy`""" | |
| # class_weight is a manual rescaling weight given to each class. | |
| # If given, has to be a Tensor of size C element-wise losses | |
| loss = F.cross_entropy( | |
| pred, | |
| label, | |
| weight=class_weight, | |
| reduction='none', | |
| ignore_index=ignore_index) | |
| # apply weights and do the reduction | |
| if weight is not None: | |
| weight = weight.float() | |
| loss = weight_reduce_loss( | |
| loss, weight=weight, reduction=reduction, avg_factor=avg_factor) | |
| return loss | |
| def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): | |
| """Expand onehot labels to match the size of prediction.""" | |
| bin_labels = labels.new_zeros(target_shape) | |
| valid_mask = (labels >= 0) & (labels != ignore_index) | |
| inds = torch.nonzero(valid_mask, as_tuple=True) | |
| if inds[0].numel() > 0: | |
| if labels.dim() == 3: | |
| bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 | |
| else: | |
| bin_labels[inds[0], labels[valid_mask]] = 1 | |
| valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() | |
| if label_weights is None: | |
| bin_label_weights = valid_mask | |
| else: | |
| bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) | |
| bin_label_weights *= valid_mask | |
| return bin_labels, bin_label_weights | |
| def binary_cross_entropy(pred, | |
| label, | |
| weight=None, | |
| reduction='mean', | |
| avg_factor=None, | |
| class_weight=None, | |
| ignore_index=255): | |
| """Calculate the binary CrossEntropy loss. | |
| Args: | |
| pred (torch.Tensor): The prediction with shape (N, 1). | |
| label (torch.Tensor): The learning label of the prediction. | |
| weight (torch.Tensor, optional): Sample-wise loss weight. | |
| reduction (str, optional): The method used to reduce the loss. | |
| Options are "none", "mean" and "sum". | |
| avg_factor (int, optional): Average factor that is used to average | |
| the loss. Defaults to None. | |
| class_weight (list[float], optional): The weight for each class. | |
| ignore_index (int | None): The label index to be ignored. Default: 255 | |
| Returns: | |
| torch.Tensor: The calculated loss | |
| """ | |
| if pred.dim() != label.dim(): | |
| assert (pred.dim() == 2 and label.dim() == 1) or ( | |
| pred.dim() == 4 and label.dim() == 3), \ | |
| 'Only pred shape [N, C], label shape [N] or pred shape [N, C, ' \ | |
| 'H, W], label shape [N, H, W] are supported' | |
| label, weight = _expand_onehot_labels(label, weight, pred.shape, | |
| ignore_index) | |
| # weighted element-wise losses | |
| if weight is not None: | |
| weight = weight.float() | |
| loss = F.binary_cross_entropy_with_logits( | |
| pred, label.float(), pos_weight=class_weight, reduction='none') | |
| # do the reduction for the weighted loss | |
| loss = weight_reduce_loss( | |
| loss, weight, reduction=reduction, avg_factor=avg_factor) | |
| return loss | |
| def mask_cross_entropy(pred, | |
| target, | |
| label, | |
| reduction='mean', | |
| avg_factor=None, | |
| class_weight=None, | |
| ignore_index=None): | |
| """Calculate the CrossEntropy loss for masks. | |
| Args: | |
| pred (torch.Tensor): The prediction with shape (N, C), C is the number | |
| of classes. | |
| target (torch.Tensor): The learning label of the prediction. | |
| label (torch.Tensor): ``label`` indicates the class label of the mask' | |
| corresponding object. This will be used to select the mask in the | |
| of the class which the object belongs to when the mask prediction | |
| if not class-agnostic. | |
| reduction (str, optional): The method used to reduce the loss. | |
| Options are "none", "mean" and "sum". | |
| avg_factor (int, optional): Average factor that is used to average | |
| the loss. Defaults to None. | |
| class_weight (list[float], optional): The weight for each class. | |
| ignore_index (None): Placeholder, to be consistent with other loss. | |
| Default: None. | |
| Returns: | |
| torch.Tensor: The calculated loss | |
| """ | |
| assert ignore_index is None, 'BCE loss does not support ignore_index' | |
| # TODO: handle these two reserved arguments | |
| assert reduction == 'mean' and avg_factor is None | |
| num_rois = pred.size()[0] | |
| inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) | |
| pred_slice = pred[inds, label].squeeze(1) | |
| return F.binary_cross_entropy_with_logits( | |
| pred_slice, target, weight=class_weight, reduction='mean')[None] | |
| class CrossEntropyLoss(nn.Module): | |
| """CrossEntropyLoss. | |
| Args: | |
| use_sigmoid (bool, optional): Whether the prediction uses sigmoid | |
| of softmax. Defaults to False. | |
| use_mask (bool, optional): Whether to use mask cross entropy loss. | |
| Defaults to False. | |
| reduction (str, optional): . Defaults to 'mean'. | |
| Options are "none", "mean" and "sum". | |
| class_weight (list[float] | str, optional): Weight of each class. If in | |
| str format, read them from a file. Defaults to None. | |
| loss_weight (float, optional): Weight of the loss. Defaults to 1.0. | |
| """ | |
| def __init__(self, | |
| use_sigmoid=False, | |
| use_mask=False, | |
| reduction='mean', | |
| class_weight=None, | |
| loss_weight=1.0): | |
| super(CrossEntropyLoss, self).__init__() | |
| assert (use_sigmoid is False) or (use_mask is False) | |
| self.use_sigmoid = use_sigmoid | |
| self.use_mask = use_mask | |
| self.reduction = reduction | |
| self.loss_weight = loss_weight | |
| self.class_weight = get_class_weight(class_weight) | |
| if self.use_sigmoid: | |
| self.cls_criterion = binary_cross_entropy | |
| elif self.use_mask: | |
| self.cls_criterion = mask_cross_entropy | |
| else: | |
| self.cls_criterion = cross_entropy | |
| def forward(self, | |
| cls_score, | |
| label, | |
| weight=None, | |
| avg_factor=None, | |
| reduction_override=None, | |
| **kwargs): | |
| """Forward function.""" | |
| assert reduction_override in (None, 'none', 'mean', 'sum') | |
| reduction = ( | |
| reduction_override if reduction_override else self.reduction) | |
| if self.class_weight is not None: | |
| class_weight = cls_score.new_tensor(self.class_weight) | |
| else: | |
| class_weight = None | |
| loss_cls = self.loss_weight * self.cls_criterion( | |
| cls_score, | |
| label, | |
| weight, | |
| class_weight=class_weight, | |
| reduction=reduction, | |
| avg_factor=avg_factor, | |
| **kwargs) | |
| return loss_cls | |