Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,46 @@
|
|
| 1 |
import os, textwrap, torch, gradio as gr
|
| 2 |
from transformers import (
|
| 3 |
-
pipeline,
|
| 4 |
AutoTokenizer,
|
| 5 |
AutoModelForCausalLM,
|
| 6 |
BitsAndBytesConfig,
|
|
|
|
| 7 |
)
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
"MODEL_ID",
|
| 12 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.3" # correct model name
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
# β
2. Load in 4-bit so it fits on Hugging-Face ZeroGPU (<15 GB)
|
| 16 |
-
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True)
|
| 17 |
|
| 18 |
-
tok = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 19 |
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
MODEL_ID,
|
| 22 |
-
quantization_config=bnb_cfg, # 4-bit
|
| 23 |
device_map="auto",
|
| 24 |
-
|
| 25 |
-
|
| 26 |
)
|
| 27 |
|
| 28 |
-
# β
3. Use *text-generation* with an explicit prompt template
|
| 29 |
prompt_tmpl = (
|
| 30 |
"Summarise the following transcript in short in 1 or 2 paragraph and point wise and don't miss any key information cover all"
|
| 31 |
)
|
| 32 |
|
| 33 |
-
gen = pipeline(
|
| 34 |
-
|
| 35 |
-
model=model,
|
| 36 |
-
tokenizer=tok,
|
| 37 |
-
max_new_tokens=256,
|
| 38 |
-
temperature=0.1,
|
| 39 |
-
)
|
| 40 |
|
| 41 |
-
MAX_CHUNK = 6_000
|
| 42 |
|
| 43 |
-
def summarize(txt):
|
| 44 |
parts = textwrap.wrap(txt, MAX_CHUNK, break_long_words=False)
|
| 45 |
partials = [
|
| 46 |
-
gen(
|
|
|
|
| 47 |
for p in parts
|
| 48 |
]
|
| 49 |
-
return gen(
|
| 50 |
.split("### Summary:")[-1].strip()
|
| 51 |
|
| 52 |
-
demo = gr.Interface(
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
title="Mixtral-8Γ7B Transcript Summariser",
|
| 57 |
-
)
|
| 58 |
|
| 59 |
if __name__ == "__main__":
|
| 60 |
demo.launch()
|
|
|
|
| 1 |
import os, textwrap, torch, gradio as gr
|
| 2 |
from transformers import (
|
|
|
|
| 3 |
AutoTokenizer,
|
| 4 |
AutoModelForCausalLM,
|
| 5 |
BitsAndBytesConfig,
|
| 6 |
+
pipeline,
|
| 7 |
)
|
| 8 |
|
| 9 |
+
MODEL_ID = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ" # β 8 GB quantised
|
| 10 |
+
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
|
| 13 |
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
MODEL_ID,
|
|
|
|
| 16 |
device_map="auto",
|
| 17 |
+
trust_remote_code=True,
|
| 18 |
+
quantization_config=bnb_cfg,
|
| 19 |
)
|
| 20 |
|
|
|
|
| 21 |
prompt_tmpl = (
|
| 22 |
"Summarise the following transcript in short in 1 or 2 paragraph and point wise and don't miss any key information cover all"
|
| 23 |
)
|
| 24 |
|
| 25 |
+
gen = pipeline("text-generation", model=model, tokenizer=tok,
|
| 26 |
+
max_new_tokens=256, temperature=0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
MAX_CHUNK = 6_000 # β 4 k tokens
|
| 29 |
|
| 30 |
+
def summarize(txt: str) -> str:
|
| 31 |
parts = textwrap.wrap(txt, MAX_CHUNK, break_long_words=False)
|
| 32 |
partials = [
|
| 33 |
+
gen(prompt_tpl.format(chunk=p))[0]["generated_text"]
|
| 34 |
+
.split("### Summary:")[-1].strip()
|
| 35 |
for p in parts
|
| 36 |
]
|
| 37 |
+
return gen(prompt_tpl.format(chunk=" ".join(partials)))[0]["generated_text"]\
|
| 38 |
.split("### Summary:")[-1].strip()
|
| 39 |
|
| 40 |
+
demo = gr.Interface(fn=summarize,
|
| 41 |
+
inputs=gr.Textbox(lines=20, label="Transcript"),
|
| 42 |
+
outputs="text",
|
| 43 |
+
title="Free Transcript Summariser β Mixtral-8Γ7B")
|
|
|
|
|
|
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
| 46 |
demo.launch()
|