File size: 39,160 Bytes
6cfcfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import re
import os
import gc
import sys
import time
import faiss
import torch
import librosa
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers

import numpy as np
import soundfile as sf
import torch.nn.functional as F

from tqdm import tqdm
from scipy import signal
from distutils.util import strtobool

warnings.filterwarnings("ignore")
sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.algorithm.synthesizers import Synthesizer
from main.library.utils import check_predictors, check_embedders, load_audio, load_embedders_model, cut, restore

bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False

for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3", "transformers", "matplotlib"]:
    logging.getLogger(l).setLevel(logging.ERROR)

if logger.hasHandlers(): logger.handlers.clear()
else:
    console_handler = logging.StreamHandler()
    console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    console_handler.setFormatter(console_formatter)
    console_handler.setLevel(logging.INFO)
    file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "convert.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
    file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
    file_handler.setFormatter(file_formatter)
    file_handler.setLevel(logging.DEBUG)
    logger.addHandler(console_handler)
    logger.addHandler(file_handler)
    logger.setLevel(logging.DEBUG)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--pitch", type=int, default=0)
    parser.add_argument("--filter_radius", type=int, default=3)
    parser.add_argument("--index_rate", type=float, default=0.5)
    parser.add_argument("--volume_envelope", type=float, default=1)
    parser.add_argument("--protect", type=float, default=0.33)
    parser.add_argument("--hop_length", type=int, default=64)
    parser.add_argument("--f0_method", type=str, default="rmvpe")
    parser.add_argument("--embedder_model", type=str, default="contentvec_base")
    parser.add_argument("--input_path", type=str, required=True)
    parser.add_argument("--output_path", type=str, default="./audios/output.wav")
    parser.add_argument("--export_format", type=str, default="wav")
    parser.add_argument("--pth_path",  type=str,  required=True)
    parser.add_argument("--index_path", type=str)
    parser.add_argument("--f0_autotune", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--f0_autotune_strength", type=float, default=1)
    parser.add_argument("--clean_audio", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--clean_strength", type=float, default=0.7)
    parser.add_argument("--resample_sr", type=int, default=0)
    parser.add_argument("--split_audio", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--f0_file", type=str, default="")
    parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--embedders_mode", type=str, default="fairseq")
    parser.add_argument("--formant_shifting", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--formant_qfrency", type=float, default=0.8)
    parser.add_argument("--formant_timbre", type=float, default=0.8)

    return parser.parse_args()

def main():
    args = parse_arguments()
    pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre = args.pitch, args.filter_radius, args.index_rate, args.volume_envelope,args.protect, args.hop_length, args.f0_method, args.input_path, args.output_path, args.pth_path, args.index_path, args.f0_autotune, args.f0_autotune_strength, args.clean_audio, args.clean_strength, args.export_format, args.embedder_model, args.resample_sr, args.split_audio, args.checkpointing, args.f0_file, args.f0_onnx, args.embedders_mode, args.formant_shifting, args.formant_qfrency, args.formant_timbre

    log_data = {translations['pitch']: pitch, translations['filter_radius']: filter_radius, translations['index_strength']: index_rate, translations['volume_envelope']: volume_envelope, translations['protect']: protect, "Hop length": hop_length, translations['f0_method']: f0_method, translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_path']: pth_path, translations['indexpath']: index_path, translations['autotune']: f0_autotune, translations['clear_audio']: clean_audio, translations['export_format']: export_format, translations['hubert_model']: embedder_model, translations['split_audio']: split_audio, translations['memory_efficient_training']: checkpointing, translations["f0_onnx_mode"]: f0_onnx, translations["embed_mode"]: embedders_mode}

    if clean_audio: log_data[translations['clean_strength']] = clean_strength
    if resample_sr != 0: log_data[translations['sample_rate']] = resample_sr

    if f0_autotune: log_data[translations['autotune_rate_info']] = f0_autotune_strength
    if os.path.isfile(f0_file): log_data[translations['f0_file']] = f0_file

    if formant_shifting:
        log_data[translations['formant_qfrency']] = formant_qfrency
        log_data[translations['formant_timbre']] = formant_timbre

    for key, value in log_data.items():
        logger.debug(f"{key}: {value}")
    
    run_convert_script(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, input_path=input_path, output_path=output_path, pth_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, split_audio=split_audio, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, embedders_mode=embedders_mode, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)

def run_convert_script(pitch=0, filter_radius=3, index_rate=0.5, volume_envelope=1, protect=0.5, hop_length=64, f0_method="rmvpe", input_path=None, output_path="./output.wav", pth_path=None, index_path=None, f0_autotune=False, f0_autotune_strength=1, clean_audio=False, clean_strength=0.7, export_format="wav", embedder_model="contentvec_base", resample_sr=0, split_audio=False, checkpointing=False, f0_file=None, f0_onnx=False, embedders_mode="fairseq", formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
    check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_mode)

    if not pth_path or not os.path.exists(pth_path) or os.path.isdir(pth_path) or not pth_path.endswith((".pth", ".onnx")):
        logger.warning(translations["provide_file"].format(filename=translations["model"]))
        sys.exit(1)

    cvt = VoiceConverter(pth_path, 0)
    start_time = time.time()

    pid_path = os.path.join("assets", "convert_pid.txt")
    with open(pid_path, "w") as pid_file:
        pid_file.write(str(os.getpid()))

    if os.path.isdir(input_path):
        logger.info(translations["convert_batch"])
        audio_files = [f for f in os.listdir(input_path) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]

        if not audio_files: 
            logger.warning(translations["not_found_audio"])
            sys.exit(1)

        logger.info(translations["found_audio"].format(audio_files=len(audio_files)))

        for audio in audio_files:
            audio_path = os.path.join(input_path, audio)
            output_audio = os.path.join(input_path, os.path.splitext(audio)[0] + f"_output.{export_format}")

            logger.info(f"{translations['convert_audio']} '{audio_path}'...")
            if os.path.exists(output_audio): os.remove(output_audio)
            cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=audio_path, audio_output_path=output_audio, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, embedders_mode=embedders_mode, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre, split_audio=split_audio)

        logger.info(translations["convert_batch_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
    else:
        if not os.path.exists(input_path):
            logger.warning(translations["not_found_audio"])
            sys.exit(1)

        logger.info(f"{translations['convert_audio']} '{input_path}'...")
        if os.path.exists(output_path): os.remove(output_path)
        cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=input_path, audio_output_path=output_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, embedders_mode=embedders_mode, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre, split_audio=split_audio)

        if os.path.exists(pid_path): os.remove(pid_path)
        logger.info(translations["convert_audio_success"].format(input_path=input_path, elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))

def change_rms(source_audio, source_rate, target_audio, target_rate, rate):
    rms2 = F.interpolate(torch.from_numpy(librosa.feature.rms(y=target_audio, frame_length=target_rate // 2 * 2, hop_length=target_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze()
    return (target_audio * (torch.pow(F.interpolate(torch.from_numpy(librosa.feature.rms(y=source_audio, frame_length=source_rate // 2 * 2, hop_length=source_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze(), 1 - rate) * torch.pow(torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6), rate - 1)).numpy())

def clear_gpu_cache():
    gc.collect()
    if torch.cuda.is_available(): torch.cuda.empty_cache()
    elif torch.backends.mps.is_available(): torch.mps.empty_cache()

def get_providers():
    ort_providers = onnxruntime.get_available_providers()

    if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
    elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
    else: providers = ["CPUExecutionProvider"]

    return providers

class Autotune:
    def __init__(self, ref_freqs):
        self.ref_freqs = ref_freqs
        self.note_dict = self.ref_freqs

    def autotune_f0(self, f0, f0_autotune_strength):
        autotuned_f0 = np.zeros_like(f0)

        for i, freq in enumerate(f0):
            autotuned_f0[i] = freq + (min(self.note_dict, key=lambda x: abs(x - freq)) - freq) * f0_autotune_strength

        return autotuned_f0

class VC:
    def __init__(self, tgt_sr, config):
        self.x_pad = config.x_pad
        self.x_query = config.x_query
        self.x_center = config.x_center
        self.x_max = config.x_max
        self.sample_rate = 16000
        self.window = 160
        self.t_pad = self.sample_rate * self.x_pad
        self.t_pad_tgt = tgt_sr * self.x_pad
        self.t_pad2 = self.t_pad * 2
        self.t_query = self.sample_rate * self.x_query
        self.t_center = self.sample_rate * self.x_center
        self.t_max = self.sample_rate * self.x_max
        self.time_step = self.window / self.sample_rate * 1000
        self.f0_min = 50
        self.f0_max = 1100
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
        self.device = config.device
        self.is_half = config.is_half
        self.ref_freqs = [49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.00, 196.00,  207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, 1046.50]
        self.autotune = Autotune(self.ref_freqs)
        self.note_dict = self.autotune.note_dict

    def get_f0_pm(self, x, p_len):
        import parselmouth

        f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
        pad_size = (p_len - len(f0) + 1) // 2

        if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
        return f0
 
    def get_f0_mangio_crepe(self, x, p_len, hop_length, model="full", onnx=False):
        from main.library.predictors.CREPE import predict

        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)

        audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()

        p_len = p_len or x.shape[0] // hop_length
        source = np.array(predict(audio.detach(), self.sample_rate, hop_length, self.f0_min, self.f0_max, model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy())
        source[source < 0.001] = np.nan

        return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))

    def get_f0_crepe(self, x, model="full", onnx=False):
        from main.library.predictors.CREPE import predict, mean, median

        f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.sample_rate, self.window, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
        f0, pd = mean(f0, 3), median(pd, 3)
        f0[pd < 0.1] = 0

        return f0[0].cpu().numpy()

    def get_f0_fcpe(self, x, p_len, hop_length, onnx=False, legacy=False):
        from main.library.predictors.FCPE import FCPE

        model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else "fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03 if legacy else 0.006, providers=get_providers(), onnx=onnx, legacy=legacy)
        f0 = model_fcpe.compute_f0(x, p_len=p_len)

        del model_fcpe
        return f0
    
    def get_f0_rmvpe(self, x, legacy=False, onnx=False):
        from main.library.predictors.RMVPE import RMVPE

        rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), is_half=self.is_half, device=self.device, onnx=onnx, providers=get_providers())
        f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)

        del rmvpe_model
        return f0

    def get_f0_pyworld(self, x, filter_radius, model="harvest"):
        from main.library.predictors.WORLD_WRAPPER import PYWORLD

        pw = PYWORLD()
        x = x.astype(np.double)

        if model == "harvest": f0, t = pw.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
        elif model == "dio": f0, t = pw.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
        else: raise ValueError(translations["method_not_valid"])

        f0 = pw.stonemask(x, self.sample_rate, t, f0)

        if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, filter_radius)
        return f0
    
    def get_f0_swipe(self, x):
        from main.library.predictors.SWIPE import swipe

        f0, _ = swipe(x.astype(np.float32), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=10)
        return f0
    
    def get_f0_yin(self, x, hop_length, p_len, mode="yin"):
        source = np.array(librosa.yin(x.astype(np.float32), sr=self.sample_rate, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length) if mode == "yin" else librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.sample_rate, hop_length=hop_length)[0])
        source[source < 0.001] = np.nan
        return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))

    def get_f0_hybrid(self, methods_str, x, p_len, hop_length, filter_radius, onnx_mode):
        methods_str = re.search("hybrid\[(.+)\]", methods_str)
        if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]

        f0_computation_stack, resampled_stack = [], []
        logger.debug(translations["hybrid_methods"].format(methods=methods))

        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)

        for method in methods:
            f0 = None
            f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len, mode="yin"), "pyin": lambda: self.get_f0_yin(x, int(hop_length), p_len, mode="pyin"), "swipe": lambda: self.get_f0_swipe(x)}
            f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
            f0_computation_stack.append(f0) 

        for f0 in f0_computation_stack:
            resampled_stack.append(np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0))

        return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)

    def get_f0(self, x, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0=None, onnx_mode=False):
        f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len, mode="yin"), "pyin": lambda: self.get_f0_yin(x, int(hop_length), p_len, mode="pyin"), "swipe": lambda: self.get_f0_swipe(x)}
        f0 = self.get_f0_hybrid(f0_method, x, p_len, hop_length, filter_radius, onnx_mode) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()

        if f0_autotune: f0 = Autotune.autotune_f0(self, f0, f0_autotune_strength)
        if isinstance(f0, tuple): f0 = f0[0]

        f0 *= pow(2, pitch / 12)
        tf0 = self.sample_rate // self.window

        if inp_f0 is not None:
            replace_f0 = np.interp(list(range(np.round((inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1).astype(np.int16))), inp_f0[:, 0] * 100, inp_f0[:, 1])
            f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[:f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]]

        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255

        return np.rint(f0_mel).astype(np.int32), f0.copy()
    
    def extract_features(self, model, feats, version):
        return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)

    def voice_conversion(self, model, net_g, sid, audio0, pitch, pitchf, index, big_npy, index_rate, version, protect):
        pitch_guidance = pitch != None and pitchf != None
        feats = (torch.from_numpy(audio0).half() if self.is_half else torch.from_numpy(audio0).float())

        if feats.dim() == 2: feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)

        with torch.no_grad():
            if self.embed_suffix == ".pt":
                padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
                logits = model.extract_features(**{"source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12})
                feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
            elif self.embed_suffix == ".onnx": feats = self.extract_features(model, feats.to(self.device), version).to(self.device)
            elif self.embed_suffix == ".safetensors":
                logits = model(feats.to(self.device))["last_hidden_state"]
                feats = (model.final_proj(logits[0]).unsqueeze(0) if version == "v1" else logits)
            else: raise ValueError(translations["option_not_valid"])

            if protect < 0.5 and pitch_guidance: feats0 = feats.clone()

            if (not isinstance(index, type(None)) and not isinstance(big_npy, type(None)) and index_rate != 0):
                npy = feats[0].cpu().numpy()
                if self.is_half: npy = npy.astype(np.float32)

                score, ix = index.search(npy, k=8)
                weight = np.square(1 / score)

                npy = np.sum(big_npy[ix] * np.expand_dims(weight / weight.sum(axis=1, keepdims=True), axis=2), axis=1)
                if self.is_half: npy = npy.astype(np.float16)

                feats = (torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats)

            feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
            if protect < 0.5 and pitch_guidance: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)

            p_len = audio0.shape[0] // self.window
            
            if feats.shape[1] < p_len:
                p_len = feats.shape[1]
                if pitch_guidance:
                    pitch = pitch[:, :p_len]
                    pitchf = pitchf[:, :p_len]

            if protect < 0.5 and pitch_guidance:
                pitchff = pitchf.clone()
                pitchff[pitchf > 0] = 1
                pitchff[pitchf < 1] = protect
                pitchff = pitchff.unsqueeze(-1)

                feats = (feats * pitchff + feats0 * (1 - pitchff)).to(feats0.dtype)

            p_len = torch.tensor([p_len], device=self.device).long()
            audio1 = ((net_g.infer(feats.half() if self.is_half else feats.float(), p_len, pitch if pitch_guidance else None, (pitchf.half() if self.is_half else pitchf.float()) if pitch_guidance else None, sid)[0][0, 0]).data.cpu().float().numpy()) if self.suffix == ".pth" else (net_g.run([net_g.get_outputs()[0].name], ({net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32), net_g.get_inputs()[4].name: pitch.cpu().numpy().astype(np.int64), net_g.get_inputs()[5].name: pitchf.cpu().numpy().astype(np.float32)} if pitch_guidance else {net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32)}))[0][0, 0])

        if self.embed_suffix == ".pt": del padding_mask
        del feats, p_len, net_g
        clear_gpu_cache()
        return audio1
    
    def pipeline(self, model, net_g, sid, audio, pitch, f0_method, file_index, index_rate, pitch_guidance, filter_radius, volume_envelope, version, protect, hop_length, f0_autotune, f0_autotune_strength, suffix, embed_suffix, f0_file=None, f0_onnx=False, pbar=None):
        self.suffix = suffix
        self.embed_suffix = embed_suffix

        if file_index != "" and os.path.exists(file_index) and index_rate != 0:
            try:
                index = faiss.read_index(file_index)
                big_npy = index.reconstruct_n(0, index.ntotal)
            except Exception as e:
                logger.error(translations["read_faiss_index_error"].format(e=e))
                index = big_npy = None
        else: index = big_npy = None

        pbar.update(1)
        opt_ts, audio_opt = [], []
        audio = signal.filtfilt(bh, ah, audio)
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")

        if audio_pad.shape[0] > self.t_max:
            audio_sum = np.zeros_like(audio)
            for i in range(self.window):
                audio_sum += audio_pad[i : i - self.window]

            for t in range(self.t_center, audio.shape[0], self.t_center):
                opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min())[0][0])

        s = 0
        t, inp_f0 = None, None
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
        sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
        p_len = audio_pad.shape[0] // self.window

        if hasattr(f0_file, "name"):
            try:
                with open(f0_file.name, "r") as f:
                    raw_lines = f.read()
                    if len(raw_lines) > 0:
                        inp_f0 = []
                        for line in raw_lines.strip("\n").split("\n"):
                            inp_f0.append([float(i) for i in line.split(",")])

                        inp_f0 = np.array(inp_f0, dtype=np.float32)
            except:
                logger.error(translations["error_readfile"])
                inp_f0 = None

        pbar.update(1)
        if pitch_guidance:
            pitch, pitchf = self.get_f0(audio_pad, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0, onnx_mode=f0_onnx)
            pitch, pitchf = pitch[:p_len], pitchf[:p_len]
            if self.device == "mps": pitchf = pitchf.astype(np.float32)
            pitch, pitchf = torch.tensor(pitch, device=self.device).unsqueeze(0).long(), torch.tensor(pitchf, device=self.device).unsqueeze(0).float()

        pbar.update(1)
        for t in opt_ts:
            t = t // self.window * self.window
            audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, pitchf[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])    
            s = t
            
        audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], (pitch[:, t // self.window :] if t is not None else pitch) if pitch_guidance else None, (pitchf[:, t // self.window :] if t is not None else pitchf) if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
        audio_opt = np.concatenate(audio_opt)
        if volume_envelope != 1: audio_opt = change_rms(audio, self.sample_rate, audio_opt, self.sample_rate, volume_envelope)
        audio_max = np.abs(audio_opt).max() / 0.99
        if audio_max > 1: audio_opt /= audio_max

        if pitch_guidance: del pitch, pitchf
        del sid
        clear_gpu_cache()
        pbar.update(1)

        return audio_opt

class VoiceConverter:
    def __init__(self, model_path, sid = 0):
        self.config = config
        self.device = config.device
        self.hubert_model = None
        self.tgt_sr = None 
        self.net_g = None 
        self.vc = None
        self.cpt = None  
        self.version = None 
        self.n_spk = None  
        self.use_f0 = None  
        self.loaded_model = None
        self.vocoder = "Default"
        self.checkpointing = False
        self.sample_rate = 16000
        self.sid = sid
        self.get_vc(model_path, sid)

    def convert_audio(self, audio_input_path, audio_output_path, index_path, embedder_model, pitch, f0_method, index_rate, volume_envelope, protect, hop_length, f0_autotune, f0_autotune_strength, filter_radius, clean_audio, clean_strength, export_format, resample_sr = 0, checkpointing = False, f0_file = None, f0_onnx = False, embedders_mode = "fairseq", formant_shifting = False, formant_qfrency = 0.8, formant_timbre = 0.8, split_audio = False):
        try:
            with tqdm(total=10, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
                audio = load_audio(logger, audio_input_path, self.sample_rate, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
                self.checkpointing = checkpointing
                audio_max = np.abs(audio).max() / 0.95
                if audio_max > 1: audio /= audio_max

                pbar.update(1)
                if not self.hubert_model:
                    models, _, embed_suffix = load_embedders_model(embedder_model, embedders_mode, providers=get_providers())
                    self.hubert_model = (models.to(self.device).half() if self.config.is_half else models.to(self.device).float()).eval() if embed_suffix in [".pt", ".safetensors"] else models
                    self.embed_suffix = embed_suffix

                pbar.update(1)
                if self.tgt_sr != resample_sr >= self.sample_rate: self.tgt_sr = resample_sr
                target_sr = min([8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 96000], key=lambda x: abs(x - self.tgt_sr))

                if split_audio:
                    chunks = cut(audio, self.sample_rate, db_thresh=-60, min_interval=500)  
                    pbar.total = len(chunks) * 4 + 6
                    logger.info(f"{translations['split_total']}: {len(chunks)}")
                else: chunks = [(audio, 0, 0)]

                converted_chunks = []
                pbar.update(1)

                for waveform, start, end in chunks:
                    converted_chunks.append((start, end, self.vc.pipeline(model=self.hubert_model, net_g=self.net_g, sid=self.sid, audio=waveform, pitch=pitch, f0_method=f0_method, file_index=(index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added")), index_rate=index_rate, pitch_guidance=self.use_f0, filter_radius=filter_radius, volume_envelope=volume_envelope, version=self.version, protect=protect, hop_length=hop_length, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, suffix=self.suffix, embed_suffix=self.embed_suffix, f0_file=f0_file, f0_onnx=f0_onnx, pbar=pbar)))
                
                pbar.update(1)
                audio_output = restore(converted_chunks, total_len=len(audio), dtype=converted_chunks[0][2].dtype) if split_audio else converted_chunks[0][2]
                if target_sr >= self.sample_rate and self.tgt_sr != target_sr: audio_output = librosa.resample(audio_output, orig_sr=self.tgt_sr, target_sr=target_sr, res_type="soxr_vhq")

                pbar.update(1)
                if clean_audio:
                    from main.tools.noisereduce import reduce_noise
                    audio_output = reduce_noise(y=audio_output, sr=target_sr, prop_decrease=clean_strength, device=self.device) 

                sf.write(audio_output_path, audio_output, target_sr, format=export_format)
                pbar.update(1)
        except Exception as e:
            logger.error(translations["error_convert"].format(e=e))
            import traceback
            logger.debug(traceback.format_exc())

    def get_vc(self, weight_root, sid):
        if sid == "" or sid == []:
            self.cleanup()
            clear_gpu_cache()

        if not self.loaded_model or self.loaded_model != weight_root:
            self.loaded_model = weight_root
            self.load_model()
            if self.cpt is not None: self.setup()

    def cleanup(self):
        if self.hubert_model is not None:
            del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
            self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
            clear_gpu_cache()

        del self.net_g, self.cpt
        clear_gpu_cache()
        self.cpt = None

    def load_model(self):
        if os.path.isfile(self.loaded_model):
            if self.loaded_model.endswith(".pth"): self.cpt = torch.load(self.loaded_model, map_location="cpu")  
            else: 
                sess_options = onnxruntime.SessionOptions()
                sess_options.log_severity_level = 3
                self.cpt = onnxruntime.InferenceSession(self.loaded_model, sess_options=sess_options, providers=get_providers())
        else: self.cpt = None

    def setup(self):
        if self.cpt is not None:
            if self.loaded_model.endswith(".pth"):
                self.tgt_sr = self.cpt["config"][-1]
                self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
                self.use_f0 = self.cpt.get("f0", 1)
                self.version = self.cpt.get("version", "v1")
                self.vocoder = self.cpt.get("vocoder", "Default")
                if self.vocoder != "Default": self.config.is_half = False

                self.net_g = Synthesizer(*self.cpt["config"], use_f0=self.use_f0, text_enc_hidden_dim=768 if self.version == "v2" else 256, vocoder=self.vocoder, checkpointing=self.checkpointing)
                del self.net_g.enc_q

                self.net_g.load_state_dict(self.cpt["weight"], strict=False)
                self.net_g.eval().to(self.device)
                self.net_g = (self.net_g.half() if self.config.is_half else self.net_g.float())
                self.n_spk = self.cpt["config"][-3]
                self.suffix = ".pth"
            else:
                import json
                import onnx

                metadata_dict = None
                for prop in onnx.load(self.loaded_model).metadata_props:
                    if prop.key == "model_info":
                        metadata_dict = json.loads(prop.value)
                        break

                self.net_g = self.cpt
                self.tgt_sr = metadata_dict.get("sr", 32000)
                self.use_f0 = metadata_dict.get("f0", 1)
                self.version = metadata_dict.get("version", "v1")
                self.suffix = ".onnx"

            self.vc = VC(self.tgt_sr, self.config)

if __name__ == "__main__": main()