File size: 76,702 Bytes
6cfcfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 |
import re
import sys
import math
import uuid
import torch
import types
import contextlib
import numpy as np
import torch.nn.functional as F
from torch import nn
from omegaconf import DictConfig, open_dict
class Dictionary:
def __init__(self, *args, **kwargs):
pass
fairseq = types.ModuleType("fairseq")
fairseq_data = types.ModuleType("fairseq.data")
fairseq_data_dictionary = types.ModuleType("fairseq.data.dictionary")
fairseq_data_dictionary.Dictionary = Dictionary
fairseq.data = fairseq_data
fairseq_data.dictionary = fairseq_data_dictionary
sys.modules["fairseq"] = fairseq
sys.modules["fairseq.data"] = fairseq_data
sys.modules["fairseq.data.dictionary"] = fairseq_data_dictionary
def load_model(filename):
state = torch.load(filename, map_location="cpu")
model = HubertModel(HubertConfig(**state['cfg']['model']))
model.load_state_dict(state['model'], strict=False)
return [model], Model_Config(state["cfg"]), Model_Config(state["cfg"]["task"])
def softmax(x, dim, onnx_trace = False):
return F.softmax(x.float(), dim=dim) if onnx_trace else F.softmax(x, dim=dim, dtype=torch.float32)
def log_softmax(x, dim, onnx_trace = False):
return F.log_softmax(x.float(), dim=dim) if onnx_trace else F.log_softmax(x, dim=dim, dtype=torch.float32)
def eval_str_dict(x, type=dict):
if x is None: return None
if isinstance(x, str): x = eval(x)
return x
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls.__bases__ if b != FairseqIncrementalState)
return cls
def quant_noise(module, p, block_size):
if p <= 0: return module
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
is_conv = module.weight.ndim == 4
if not is_conv: assert (module.weight.size(1) % block_size == 0)
else:
if module.kernel_size == (1, 1): assert (module.in_channels % block_size == 0)
else:
k = module.kernel_size[0] * module.kernel_size[1]
assert k % block_size == 0
def _forward_pre_hook(mod, input):
if mod.training:
if not is_conv:
weight = mod.weight
in_features = weight.size(1)
out_features = weight.size(0)
mask = torch.zeros(in_features // block_size * out_features, device=weight.device)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
if mod.kernel_size == (1, 1):
mask = torch.zeros(int(in_channels // block_size * out_channels), device=weight.device)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device)
mask.bernoulli_(p)
mask = (mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]))
mask = mask.to(torch.bool)
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
class FairseqDropout(nn.Module):
def __init__(self, p, module_name=None):
super().__init__()
self.p = p
self.module_name = module_name
self.apply_during_inference = False
def forward(self, x, inplace = False):
return F.dropout(x, p=self.p, training=True, inplace=inplace) if self.p > 0 and (self.training or self.apply_during_inference) else x
def make_generation_fast_(self, name, retain_dropout = False, retain_dropout_modules = None, **kwargs):
if retain_dropout:
if (retain_dropout_modules is None or self.module_name in retain_dropout_modules): self.apply_during_inference = True
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key):
return "{}.{}".format(self._incremental_state_id, key)
def get_incremental_state(self, incremental_state, key):
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state: return None
return incremental_state[full_key]
def set_incremental_state(self, incremental_state, key, value):
if incremental_state is not None: incremental_state[self._get_full_incremental_state_key(key)] = value
return incremental_state
class FairseqDecoder(nn.Module):
def __init__(self, dictionary):
super().__init__()
self.dictionary = dictionary
self.onnx_trace = False
self.adaptive_softmax = None
def forward(self, prev_output_tokens, encoder_out=None, **kwargs):
x, extra = self.extract_features(prev_output_tokens, encoder_out=encoder_out, **kwargs)
return self.output_layer(x), extra
def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs):
pass
def output_layer(self, features, **kwargs):
pass
def get_normalized_probs(self, net_output, log_probs, sample = None):
return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
def get_normalized_probs_scriptable(self, net_output, log_probs, sample = None):
if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None:
if sample is not None:
assert "target" in sample
target = sample["target"]
else: target = None
out = self.adaptive_softmax.get_log_prob(net_output[0], target=target)
return out.exp_() if not log_probs else out
logits = net_output[0]
return log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace) if log_probs else softmax(logits, dim=-1, onnx_trace=self.onnx_trace)
def max_positions(self):
return 1e6
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def prepare_for_onnx_export_(self):
self.onnx_trace = True
@with_incremental_state
class FairseqIncrementalDecoder(FairseqDecoder):
def __init__(self, dictionary):
super().__init__(dictionary)
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs):
pass
def extract_features(self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs):
pass
def reorder_incremental_state(self, incremental_state, new_order):
pass
def reorder_incremental_state_scripting(self, incremental_state, new_order):
for module in self.modules():
if hasattr(module, "reorder_incremental_state"):
result = module.reorder_incremental_state(incremental_state, new_order)
if result is not None: incremental_state = result
def set_beam_size(self, beam_size):
if getattr(self, "_beam_size", -1) != beam_size:
seen = set()
def apply_set_beam_size(module):
if (module != self and hasattr(module, "set_beam_size") and module not in seen):
seen.add(module)
module.set_beam_size(beam_size)
self.apply(apply_set_beam_size)
self._beam_size = beam_size
class MultiheadAttention(FairseqIncrementalDecoder):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, dictionary=None, q_noise=0.0, qn_block_size=8, xformers_att_config=None, xformers_blocksparse_layout=None, xformers_blocksparse_blocksize=16):
super().__init__(dictionary)
xformers_att_config = eval_str_dict(xformers_att_config)
self.use_xformers = xformers_att_config is not None
if self.use_xformers: raise ImportError
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = FairseqDropout(dropout, module_name=self.__class__.__name__)
self.head_dim = embed_dim // num_heads
assert (self.head_dim * num_heads == self.embed_dim)
self.scaling = self.head_dim**-0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim
self.k_proj = quant_noise(nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size)
self.v_proj = quant_noise(nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size)
self.q_proj = quant_noise(nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)
self.out_proj = quant_noise(nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)
if add_bias_kv:
self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim))
else: self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.beam_size = 1
self.reset_parameters()
self.onnx_trace = False
self.skip_embed_dim_check = False
self.init_incremental_state()
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v)
def _get_reserve_head_index(self, num_heads_to_keep: int):
k_proj_heads_norm, q_proj_heads_norm, v_proj_heads_norm = [], [], []
for i in range(self.num_heads):
start_idx = i * self.head_dim
end_idx = (i + 1) * self.head_dim
k_proj_heads_norm.append(torch.sum(torch.abs(self.k_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist())
q_proj_heads_norm.append(torch.sum(torch.abs(self.q_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist())
v_proj_heads_norm.append(torch.sum(torch.abs(self.v_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist())
heads_norm = []
for i in range(self.num_heads):
heads_norm.append(k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i])
sorted_head_index = sorted(range(self.num_heads), key=lambda k: heads_norm[k], reverse=True)
reserve_head_index = []
for i in range(num_heads_to_keep):
reserve_head_index.append((sorted_head_index[i] * self.head_dim, (sorted_head_index[i] + 1) * self.head_dim))
return reserve_head_index
def _adaptive_prune_heads(self, reserve_head_index):
new_q_weight, new_q_bias, new_k_weight, new_k_bias, new_v_weight, new_v_bias, new_out_proj_weight = [], [], [], [], [], [], []
for ele in reserve_head_index:
start_idx, end_idx = ele
new_q_weight.append(self.q_proj.weight[start_idx:end_idx])
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
new_k_weight.append(self.k_proj.weight[start_idx:end_idx])
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
new_v_weight.append(self.v_proj.weight[start_idx:end_idx])
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
new_q_weight = torch.cat(new_q_weight).detach()
new_k_weight = torch.cat(new_k_weight).detach()
new_v_weight = torch.cat(new_v_weight).detach()
new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
new_q_weight.requires_grad = True
new_k_weight.requires_grad = True
new_v_weight.requires_grad = True
new_out_proj_weight.requires_grad = True
new_q_bias = torch.cat(new_q_bias).detach()
new_q_bias.requires_grad = True
new_k_bias = torch.cat(new_k_bias).detach()
new_k_bias.requires_grad = True
new_v_bias = torch.cat(new_v_bias).detach()
new_v_bias.requires_grad = True
self.q_proj.weight = nn.Parameter(new_q_weight)
self.q_proj.bias = nn.Parameter(new_q_bias)
self.k_proj.weight = nn.Parameter(new_k_weight)
self.k_proj.bias = nn.Parameter(new_k_bias)
self.v_proj.weight = nn.Parameter(new_v_weight)
self.v_proj.bias = nn.Parameter(new_v_bias)
self.out_proj.weight = nn.Parameter(new_out_proj_weight)
self.num_heads = len(reserve_head_index)
self.embed_dim = self.head_dim * self.num_heads
self.q_proj.out_features = self.embed_dim
self.k_proj.out_features = self.embed_dim
self.v_proj.out_features = self.embed_dim
def _set_skip_embed_dim_check(self):
self.skip_embed_dim_check = True
def _pad_masks(self, key_padding_mask, attn_mask):
if attn_mask is not None:
shape = attn_mask.size()[:-1] + torch.Size([1])
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
if key_padding_mask is not None:
shape = key_padding_mask.size()[:-1] + torch.Size([1])
key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_zeros(shape)], dim=-1)
return key_padding_mask, attn_mask
def _add_bias(self, k, v, key_padding_mask, attn_mask, bsz):
assert self.bias_k is not None or self.bias_v is not None
key_padding_mask, attn_mask = self._pad_masks(key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return torch.cat([k, self.bias_k.repeat(1, bsz, 1)]), torch.cat([v, self.bias_v.repeat(1, bsz, 1)]), key_padding_mask, attn_mask
def _append_zero_attn(self, k, v, key_padding_mask, attn_mask):
zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
key_padding_mask, attn_mask = self._pad_masks(key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2), torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2), key_padding_mask, attn_mask
def forward(self, query, key, value, key_padding_mask = None, incremental_state = None, need_weights = True, static_kv = False, attn_mask = None, before_softmax = False, need_head_weights = False):
if need_head_weights: need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
if not self.skip_embed_dim_check: assert (embed_dim == self.embed_dim)
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert value is not None
assert src_len, key_bsz == value.shape[:2]
if (not self.onnx_trace and not is_tpu and incremental_state is None and not static_kv and not torch.jit.is_scripting() and not self.skip_embed_dim_check):
assert key is not None and value is not None
return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask.bool() if key_padding_mask is not None else None, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else: saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
if self.beam_size > 1 and bsz == key.size(1):
key = key.view(key.size(0), -1, self.beam_size, key.size(2))[:, :, 0, :]
if key_padding_mask is not None: key_padding_mask = key_padding_mask.view(-1, self.beam_size, key_padding_mask.size(1))[:, 0, :]
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k, v, attn_mask, key_padding_mask = self._add_bias(k, v, attn_mask, key_padding_mask, bsz)
q = (q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1))
kv_bsz = bsz
if k is not None:
kv_bsz = k.size(1)
k = (k.contiguous().view(-1, kv_bsz * self.num_heads, self.head_dim).transpose(0, 1))
if v is not None: v = (v.contiguous().view(-1, kv_bsz * self.num_heads, self.head_dim).transpose(0, 1))
if saved_state is not None:
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
kv_bsz = _prev_key.size(0)
prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
if static_kv: k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None or kv_bsz == _prev_value.size(0)
prev_value = _prev_value.view(kv_bsz * self.num_heads, -1, self.head_dim)
if static_kv: v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask = None
if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=kv_bsz, src_len=k.size(1), static_kv=static_kv)
saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(kv_bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == kv_bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k, v, key_padding_mask, attn_mask = self._append_zero_attn(k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
if self.encoder_decoder_attention and bsz != kv_bsz:
attn_weights = torch.einsum("bxhtd,bhsd->bxhts", q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]), k.view((kv_bsz, self.num_heads) + k.size()[1:]))
attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
else: attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(kv_bsz, -1, self.num_heads, tgt_len, src_len).masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3).to(torch.bool), float("-inf")) if not is_tpu else attn_weights.transpose(0, 2).masked_fill(key_padding_mask, float("-inf")).transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax: return attn_weights, v
attn_weights_float = softmax(attn_weights, dim=-1, onnx_trace=self.onnx_trace)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = None
if self.encoder_decoder_attention and bsz != kv_bsz:
attn = torch.einsum("bxhts,bhsd->bxhtd", attn_probs.view((kv_bsz, -1, self.num_heads) + attn_probs.size()[1:]), v.view((kv_bsz, self.num_heads) + v.size()[1:]))
attn = attn.reshape((-1,) + attn.size()[-2:])
else: attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1: attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
attn = self.out_proj(attn)
attn_weights = None
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights: attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(key_padding_mask, prev_key_padding_mask, batch_size, src_len, static_kv):
if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), key_padding_mask.float()], dim=1)
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
filler = torch.zeros((batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device)
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1)
else: new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
filler = torch.zeros((batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device)
new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1)
else: new_key_padding_mask = key_padding_mask.float()
else: new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention:
if input_buffer_k.size(0) * self.beam_size == new_order.size(0): return incremental_state
elif self.beam_size > 1: input_buffer[k] = input_buffer_k.index_select(0, new_order.reshape(-1, self.beam_size)[:, 0] // self.beam_size)
else: input_buffer[k] = input_buffer_k.index_select(0, new_order)
else: input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def set_beam_size(self, beam_size):
self.beam_size = beam_size
def _get_input_buffer(self, incremental_state):
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None: return result
else: return {}
def _set_input_buffer(self, incremental_state, buffer):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][dim : 2 * dim]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
def init_bert_params(module):
def normal_(data):
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None: module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
normal_(module.q_proj.weight.data)
normal_(module.k_proj.weight.data)
normal_(module.v_proj.weight.data)
def make_conv_pos(e, k, g):
pos_conv = nn.Conv1d(e, e, kernel_size=k, padding=k // 2, groups=g)
dropout = 0
nn.init.normal_(pos_conv.weight, mean=0, std=math.sqrt((4 * (1.0 - dropout)) / (k * e)))
nn.init.constant_(pos_conv.bias, 0)
return nn.Sequential(nn.utils.parametrizations.weight_norm(pos_conv, name="weight", dim=2), SamePad(k), nn.GELU())
def is_xla_tensor(tensor):
return torch.is_tensor(tensor) and tensor.device.type == "xla"
def index_put(tensor, indices, value):
if is_xla_tensor(tensor):
for _ in range(indices.dim(), tensor.dim()):
indices = indices.unsqueeze(-1)
if indices.size(-1) < tensor.size(-1): indices = indices.expand_as(tensor)
tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices)
else: tensor[indices] = value
return tensor
def pad_to_multiple(x, multiple, dim=-1, value=0):
if x is None: return None, 0
tsz = x.size(dim)
m = tsz / multiple
remainder = math.ceil(m) * multiple - tsz
if m.is_integer(): return x, 0
return F.pad(x, (*((0,) * (-1 - dim) * 2), 0, remainder), value=value), remainder
def compute_mask_indices(shape, padding_mask, mask_prob, mask_length, mask_type = "static", mask_other = 0.0, min_masks = 0, no_overlap = False, min_space = 0, require_same_masks = True, mask_dropout = 0.0, add_masks = False, seed = None, epoch = None, indices = None, idc_select_ver = 1, num_mask_ver = 2):
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
if num_mask_ver == 1: all_num_mask = max(min_masks, int(mask_prob * all_sz / float(mask_length) + np.random.rand()))
mask_idcs = []
for i in range(bsz):
seed_i = int(hash((seed, epoch, indices[i].item())) % 1e6) if seed is not None and epoch is not None and indices is not None else None
rng = np.random.default_rng(seed_i)
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
assert sz >= 0, sz
else: sz = all_sz
if num_mask_ver == 1: num_mask = max(min_masks, int(mask_prob * sz / float(mask_length) + np.random.rand())) if padding_mask is not None else all_num_mask
elif num_mask_ver == 2: num_mask = max(min_masks, int(mask_prob * sz / float(mask_length) + rng.random()))
else: raise ValueError
if mask_type == "static": lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform": lengths = rng.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal": lengths = [max(1, int(round(x))) for x in rng.normal(mask_length, mask_other, size=num_mask)]
elif mask_type == "poisson": lengths = [int(round(x)) for x in rng.poisson(mask_length, size=num_mask)]
else: raise Exception
if sum(lengths) == 0:
if mask_type == "static": raise ValueError
else: lengths = [min(mask_length, sz - 1)]
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = rng.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1))
if e - span_start - length - min_space > keep_length: new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter((e - s if e - s >= length + min_space else 0 for s, e in parts), np.int32)
l_sum = np.sum(lens)
if l_sum == 0: break
s, e = parts.pop(rng.choice(len(parts), p=lens / np.sum(lens)))
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
if idc_select_ver == 1:
min_len = min(lengths)
if sz - min_len <= num_mask: min_len = sz - num_mask - 1
mask_idc = rng.choice(sz - min_len, num_mask, replace=False)
elif idc_select_ver == 2: mask_idc = rng.choice(sz, num_mask, replace=False)
else: raise ValueError
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])])
mask_idc = np.unique(mask_idc[mask_idc < sz])
if len(mask_idc) >= sz: raise ValueError
mask_idcs.append(mask_idc)
target_len = None
if require_same_masks: target_len = max([len(m) for m in mask_idcs]) if add_masks else min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if target_len is not None and len(mask_idc) > target_len: mask_idc = rng.choice(mask_idc, target_len, replace=False)
mask[i, mask_idc] = True
if target_len is not None and len(mask_idc) < target_len:
to_mask = rng.choice(np.flatnonzero(~mask[i]), target_len - len(mask_idc), replace=False)
mask[i, to_mask] = True
if mask_dropout > 0:
masked = np.flatnonzero(mask[i])
mask[i, rng.choice(masked, np.rint(len(masked) * mask_dropout).astype(int), replace=False)] = False
return mask
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True):
return nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def prune_state_dict(state_dict, model_cfg):
arch = None
if model_cfg is not None: arch = (model_cfg._name if isinstance(model_cfg, DictConfig) else getattr(model_cfg, "arch", None))
if not model_cfg or arch is None or arch == "ptt_transformer": return state_dict
encoder_layers_to_keep = getattr(model_cfg, "encoder_layers_to_keep", None)
decoder_layers_to_keep = getattr(model_cfg, "decoder_layers_to_keep", None)
if not encoder_layers_to_keep and not decoder_layers_to_keep: return state_dict
def create_pruning_pass(layers_to_keep, layer_name):
keep_layers = sorted(int(layer_string) for layer_string in layers_to_keep.split(","))
mapping_dict = {}
for i in range(len(keep_layers)):
mapping_dict[str(keep_layers[i])] = str(i)
return {"substitution_regex": re.compile(r"^{layer}.*\.layers\.(\d+)".format(layer=layer_name)), "mapping_dict": mapping_dict}
pruning_passes = []
new_state_dict = {}
if encoder_layers_to_keep: pruning_passes.append(create_pruning_pass(encoder_layers_to_keep, "encoder"))
if decoder_layers_to_keep: pruning_passes.append(create_pruning_pass(decoder_layers_to_keep, "decoder"))
for layer_name in state_dict.keys():
match = re.search(r"\.layers\.(\d+)\.", layer_name)
if not match:
new_state_dict[layer_name] = state_dict[layer_name]
continue
original_layer_number = match.group(1)
for pruning_pass in pruning_passes:
if original_layer_number in pruning_pass["mapping_dict"] and pruning_pass["substitution_regex"].search(layer_name):
substitution_match = pruning_pass["substitution_regex"].search(layer_name)
new_state_dict[(layer_name[: substitution_match.start(1)] + pruning_pass["mapping_dict"][original_layer_number] + layer_name[substitution_match.end(1) :])] = state_dict[layer_name]
with open_dict(model_cfg) if isinstance(model_cfg, DictConfig) else contextlib.ExitStack():
if hasattr(model_cfg, "encoder_layers_to_keep"): model_cfg.encoder_layers_to_keep = None
if hasattr(model_cfg, "decoder_layers_to_keep"): model_cfg.decoder_layers_to_keep = None
return new_state_dict
def relu_squared(x):
return F.relu(x).pow(2)
def get_activation_fn(activation):
def gelu(x):
return nn.functional.gelu(x.float()).type_as(x)
def gelu_accurate(x):
if not hasattr(gelu_accurate, "_a"):
gelu_accurate._a = math.sqrt(2 / math.pi)
return (0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))))
if activation == "relu": return F.relu
elif activation == "relu_squared": return relu_squared
elif activation == "gelu": return gelu
elif activation == "gelu_fast": return gelu_accurate
elif activation == "gelu_accurate": return gelu_accurate
elif activation == "tanh": return torch.tanh
elif activation == "linear": return lambda x: x
elif activation == "swish": return nn.SiLU
else: raise RuntimeError
class SamePad(nn.Module):
def __init__(self, kernel_size, causal=False):
super().__init__()
if causal: self.remove = kernel_size - 1
else: self.remove = 1 if kernel_size % 2 == 0 else 0
def forward(self, x):
if self.remove > 0: x = x[:, :, : -self.remove]
return x
class TransformerSentenceEncoderLayer(nn.Module):
def __init__(self, embedding_dim = 768, ffn_embedding_dim = 3072, num_attention_heads = 8, dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.1, activation_fn = "relu", layer_norm_first = False):
super().__init__()
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
self.activation_fn = get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
self.final_layer_norm = LayerNorm(self.embedding_dim)
def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None):
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, need_weights=False)
x = residual + self.dropout1(x)
residual = x
x = self.fc2(self.dropout2(self.activation_fn(self.fc1(self.final_layer_norm(x)))))
layer_result = x
x = residual + self.dropout3(x)
else:
x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False)
x = self.self_attn_layer_norm(residual + self.dropout1(x))
residual = x
x = self.fc2(self.dropout2(self.activation_fn(self.fc1(x))))
layer_result = x
x = self.final_layer_norm(residual + self.dropout3(x))
return x, (attn, layer_result)
class AdapterFast(nn.Module):
def __init__(self, adapter_num, input_dim, hidden_dim, act_fn):
super().__init__()
self.adapter_num = adapter_num
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim))
self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim))
self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim))
self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim))
self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim))
self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim))
self.act_fn = nn.Identity()
if act_fn == "relu": self.act_fn = nn.ReLU()
elif act_fn == "gelu": self.act_fn = nn.GELU()
elif act_fn == "selu": self.act_fn = nn.SELU()
else: raise ValueError
self.input_dim = input_dim
self.reset_parameters()
def reset_parameters(self):
for ii in range(self.adapter_num):
nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5))
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii])
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.b_a[ii], -bound, bound)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii])
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.b_b[ii], -bound, bound)
nn.init.ones_(self.ln_W)
nn.init.zeros_(self.ln_b)
def forward(self, x, adapter_id):
ii = adapter_id
return F.linear(self.act_fn(F.linear(F.layer_norm(x, (self.input_dim, ), self.ln_W[ii], self.ln_b[ii]), self.W_a[ii], self.b_a[ii])), self.W_b[ii], self.b_b[ii])
def extra_repr(self):
return ('adapter={}, input_dim={}, hidden_dim={}'.format(self.adapter_num, self.input_dim, self.hidden_dim))
class FeedForwardModule(nn.Module):
def __init__(self, input_feat, hidden_units, dropout1, dropout2, activation_fn="swish", bias=True):
super(FeedForwardModule, self).__init__()
self.layer_norm = LayerNorm(input_feat)
self.w_1 = nn.Linear(input_feat, hidden_units, bias=bias)
self.w_2 = nn.Linear(hidden_units, input_feat, bias=bias)
self.dropout1 = nn.Dropout(dropout1)
self.dropout2 = nn.Dropout(dropout2)
self.activation = get_activation_fn(activation_fn)(hidden_units)
def forward(self, x):
return self.dropout2(self.w_2(self.dropout1(self.activation(self.w_1(self.layer_norm(x))))))
class ConvolutionModule(nn.Module):
def __init__(self, embed_dim, channels, depthwise_kernel_size, dropout, activation_fn="swish", bias=False, export=False):
super(ConvolutionModule, self).__init__()
assert (depthwise_kernel_size - 1) % 2 == 0
self.layer_norm = LayerNorm(embed_dim, export=export)
self.pointwise_conv1 = nn.Conv1d(embed_dim, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias)
self.glu = nn.GLU(dim=1)
self.depthwise_conv = nn.Conv1d(channels, channels, depthwise_kernel_size, stride=1, padding=(depthwise_kernel_size - 1) // 2, groups=channels, bias=bias)
self.batch_norm = nn.BatchNorm1d(channels)
self.activation = get_activation_fn(activation_fn)(channels)
self.pointwise_conv2 = nn.Conv1d(channels, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.pointwise_conv2(self.activation(self.batch_norm(self.depthwise_conv(self.glu(self.pointwise_conv1(self.layer_norm(x).transpose(1, 2)))))))).transpose(1, 2)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=x1.ndim - 1)
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
cos, sin = (cos[offset : q.shape[0] + offset, ...], sin[offset : q.shape[0] + offset, ...])
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class RotaryPositionalEmbedding(nn.Module):
def __init__(self, dim, base=10000, precision=torch.half):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = 0
self.cos_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
self.sin_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
self.precision = precision
def forward(self, x, seq_len = 0):
if seq_len > self.seq_len_cached:
self.seq_len_cached = seq_len
freqs = torch.einsum("i,j->ij", torch.arange(seq_len, device=x.device).type_as(self.inv_freq), self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos().view(emb.size(0), 1, 1, emb.size(1))
self.sin_cached = emb.sin().view(emb.size(0), 1, 1, emb.size(1))
return self.cos_cached, self.sin_cached
class ESPNETMultiHeadedAttention(nn.Module):
def __init__(self, n_feat, n_head, dropout):
super(ESPNETMultiHeadedAttention, self).__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward_qkv(self, query, key, value, **kwargs):
n_batch = query.size(0)
return self.linear_q(query).view(n_batch, -1, self.h, self.d_k).transpose(1, 2), self.linear_k(key).view(n_batch, -1, self.h, self.d_k).transpose(1, 2), self.linear_v(value).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
def forward_attention(self, value, scores, mask):
n_batch = value.size(0)
if mask is not None:
scores = scores.masked_fill(mask.unsqueeze(1).unsqueeze(2).to(bool), float("-inf"))
self.attn = torch.softmax(scores, dim=-1)
else: self.attn = torch.softmax(scores, dim=-1)
return self.linear_out((torch.matmul(self.dropout(self.attn), value).transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)))
def forward(self, query, key, value, key_padding_mask=None, **kwargs):
q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
return self.forward_attention(v, torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None
class RelPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
def __init__(self, n_feat, n_head, dropout, zero_triu=False):
super().__init__(n_feat, n_head, dropout)
self.zero_triu = zero_triu
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
self.pos_bias_u = nn.Parameter(torch.zeros(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.zeros(self.h, self.d_k))
nn.init.xavier_uniform_(self.pos_bias_u)
nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x):
x = torch.cat([torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype), x], dim=-1).view(*x.size()[:2], x.size(3) + 1, x.size(2))[:, :, 1:].view_as(x)[:, :, :, : x.size(-1) // 2 + 1]
if self.zero_triu: x = x * torch.tril(torch.ones((x.size(2), x.size(3)), device=x.device), x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, query, key, value, pos_emb, key_padding_mask=None, **kwargs):
pos_emb = pos_emb.transpose(0, 1)
q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
q = q.transpose(1, 2)
return self.forward_attention(v, (torch.matmul((q + self.pos_bias_u).transpose(1, 2), k.transpose(-2, -1)) + self.rel_shift(torch.matmul((q + self.pos_bias_v).transpose(1, 2), self.linear_pos(pos_emb).view(pos_emb.size(0), -1, self.h, self.d_k).transpose(1, 2).transpose(-2, -1)))) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None
class RotaryPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
def __init__(self, n_feat, n_head, dropout, precision, rotary_emd_base=10000):
super().__init__(n_feat, n_head, dropout)
precision = torch.float
self.rotary_ndims = self.d_k
if precision == "fp16": precision = torch.half
self.rotary_emb = RotaryPositionalEmbedding(self.rotary_ndims, base=rotary_emd_base, precision=precision)
def forward(self, query, key, value, key_padding_mask=None, **kwargs):
T, B, C = value.size()
query = query.view(T, B, self.h, self.d_k)
key = key.view(T, B, self.h, self.d_k)
value = value.view(T, B, self.h, self.d_k)
cos, sin = self.rotary_emb(value, seq_len=T)
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=0)
query = query.view(T, B, self.h * self.d_k)
key = key.view(T, B, self.h * self.d_k)
value = value.view(T, B, self.h * self.d_k)
q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
return self.forward_attention(v, torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None
class ConformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, ffn_embed_dim, attention_heads, dropout, use_fp16, depthwise_conv_kernel_size=31, activation_fn="swish", attn_type=None, pos_enc_type="abs"):
self.pos_enc_type = pos_enc_type
super(ConformerEncoderLayer, self).__init__()
self.ffn1 = FeedForwardModule(embed_dim, ffn_embed_dim, dropout, dropout)
self.self_attn_layer_norm = LayerNorm(embed_dim, export=False)
self.self_attn_dropout = nn.Dropout(dropout)
if attn_type == "espnet":
if self.pos_enc_type == "rel_pos": self.self_attn = RelPositionMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout)
elif self.pos_enc_type == "rope": self.self_attn = RotaryPositionMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout, precision=use_fp16)
elif self.pos_enc_type == "abs": self.self_attn = ESPNETMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout)
else: raise Exception
else: self.self_attn = MultiheadAttention(embed_dim, attention_heads, dropout=dropout)
self.conv_module = ConvolutionModule(embed_dim=embed_dim, channels=embed_dim, depthwise_kernel_size=depthwise_conv_kernel_size, dropout=dropout, activation_fn=activation_fn)
self.ffn2 = FeedForwardModule(embed_dim, ffn_embed_dim, dropout, dropout, activation_fn=activation_fn)
self.final_layer_norm = LayerNorm(embed_dim, export=False)
def forward(self, x, encoder_padding_mask, position_emb = None):
residual = x
x = self.ffn1(x) * 0.5 + residual
residual = x
x = self.self_attn_layer_norm(x)
if self.pos_enc_type == "rel_pos": x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, pos_emb=position_emb, need_weights=False)
else: x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False)
x = self.self_attn_dropout(x)
x = x + residual
residual = x
x = residual + self.conv_module(x.transpose(0, 1)).transpose(0, 1)
residual = x
x = self.ffn2(x)
layer_result = x
x = self.final_layer_norm(x * 0.5 + residual)
return x, (attn, layer_result)
class ConformerWav2Vec2EncoderLayer(ConformerEncoderLayer):
def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None, position_emb=None):
return super().forward(x, self_attn_padding_mask, position_emb)
class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer):
def __init__(self, embedding_dim = 768, ffn_embedding_dim = 3072, num_attention_heads = 8, dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.1, activation_fn = "relu", layer_norm_first = False, adapter_num=201, adapter_dim=64, adapter_act_fn="relu"):
super().__init__(embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, layer_norm_first=layer_norm_first)
self.adapter_num = adapter_num
self.adapter_dim = adapter_dim
self.adapter_layer = AdapterFast(adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn)
def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None, corpus_key=None):
x, (attn, layer_result) = super().forward(x=x, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_weights=need_weights, att_args=att_args)
assert corpus_key is not None
assert len(set(corpus_key)) == 1
return x + self.adapter_layer(x, corpus_key[0]), (attn, layer_result)
class TransposeLast(nn.Module):
def __init__(self, deconstruct_idx=None, tranpose_dim=-2):
super().__init__()
self.deconstruct_idx = deconstruct_idx
self.tranpose_dim = tranpose_dim
def forward(self, x):
if self.deconstruct_idx is not None: x = x[self.deconstruct_idx]
return x.transpose(self.tranpose_dim, -1)
class TransformerEncoder(nn.Module):
def build_encoder_layer(self, args, **kwargs):
if args.layer_type == "transformer": layer = TransformerSentenceEncoderLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first)
elif args.layer_type == "conformer": layer = ConformerWav2Vec2EncoderLayer(embed_dim=self.embedding_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, dropout=args.dropout, depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, activation_fn="swish", attn_type=args.attn_type, use_fp16=args.fp16, pos_enc_type="abs")
elif args.layer_type == "trf_adp":
use_adp = False
if args.adp_trf_idx == "all": use_adp = True
else:
if kwargs.get("layer_idx", None) in list(range(*[int(g) for g in args.adp_trf_idx.split(":")])): use_adp = True
layer = TransformerSentenceEncoderWithAdapterLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, adapter_num=args.adp_num, adapter_dim=args.adp_dim, adapter_act_fn=args.adp_act_fn) if use_adp else TransformerSentenceEncoderLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first,)
return layer
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
self.required_seq_len_multiple = args.required_seq_len_multiple
pos_conv_depth = getattr(args, "pos_conv_depth", 1)
if pos_conv_depth > 1:
num_layers = args.pos_conv_depth
k = max(3, args.conv_pos // num_layers)
def make_conv_block(e, k, g, l):
return nn.Sequential(*[nn.Sequential(nn.Conv1d(e, e, kernel_size=k, padding=k // 2, groups=g), SamePad(k), TransposeLast(), LayerNorm(e, elementwise_affine=False), TransposeLast(), nn.GELU()) for _ in range(l)])
self.pos_conv = make_conv_block(self.embedding_dim, k, args.conv_pos_groups, num_layers)
else: self.pos_conv = make_conv_pos(self.embedding_dim, args.conv_pos, args.conv_pos_groups)
self.layers = nn.ModuleList([self.build_encoder_layer(args, layer_idx=ii) for ii in range(args.encoder_layers)])
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
self.apply(init_bert_params)
def forward(self, x, padding_mask=None, layer=None, corpus_key=None):
x, layer_results = self.extract_features(x, padding_mask, layer, corpus_key=corpus_key)
if self.layer_norm_first and layer is None: x = self.layer_norm(x)
return x, layer_results
def extract_features(self, x, padding_mask=None, tgt_layer=None, min_layer=0, corpus_key=None):
if padding_mask is not None: x = index_put(x, padding_mask, 0)
x = x + self.pos_conv(x.transpose(1, 2)).transpose(1, 2)
if not self.layer_norm_first: x = self.layer_norm(x)
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
if pad_length > 0 and padding_mask is None:
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
padding_mask[:, -pad_length:] = True
else: padding_mask, _ = pad_to_multiple(padding_mask, self.required_seq_len_multiple, dim=-1, value=True)
x = F.dropout(x, p=self.dropout, training=self.training).transpose(0, 1)
layer_results = []
r = None
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
if not self.training or (dropout_probability > self.layerdrop):
layer_check = layer
if (corpus_key is None) or (not isinstance(layer_check, (TransformerSentenceEncoderWithAdapterLayer))): x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask, need_weights=False)
else: x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, corpus_key=corpus_key)
if i >= min_layer: layer_results.append((x, z, lr))
if i == tgt_layer:
r = x
break
if r is not None: x = r
x = x.transpose(0, 1)
if pad_length > 0:
x = x[:, :-pad_length]
def undo_pad(a, b, c):
return (a[:-pad_length], b[:-pad_length] if b is not None else b, c[:-pad_length])
layer_results = [undo_pad(*u) for u in layer_results]
return x, layer_results
def max_positions(self):
return self.args.max_positions
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
class Fp32GroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps)
return output.type_as(input)
class Fp32LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps)
return output.type_as(input)
class ConvFeatureExtractionModel(nn.Module):
def __init__(self, conv_layers, dropout = 0.0, mode = "default", conv_bias = False):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False):
def make_conv():
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
nn.init.kaiming_normal_(conv.weight)
return conv
assert (is_layer_norm and is_group_norm) == False
if is_layer_norm: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.Sequential(TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast()), nn.GELU())
elif is_group_norm: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU())
else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
in_d = 1
self.conv_layers = nn.ModuleList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3
(dim, k, stride) = cl
self.conv_layers.append(block(in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias))
in_d = dim
def forward(self, x):
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x
class GradMultiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, scale):
ctx.scale = scale
res = x.new(x)
return res
@staticmethod
def backward(ctx, grad):
return grad * ctx.scale, None
class BaseFairseqModel(nn.Module):
def __init__(self):
super().__init__()
self._is_generation_fast = False
def get_targets(self, sample, net_output):
return sample["target"]
def extract_features(self, *args, **kwargs):
return self(*args, **kwargs)
def load_state_dict(self, state_dict, strict=True, model_cfg = None, args = None):
self.upgrade_state_dict(state_dict)
new_state_dict = prune_state_dict(state_dict, model_cfg)
return super().load_state_dict(new_state_dict, strict)
def upgrade_state_dict(self, state_dict):
self.upgrade_state_dict_named(state_dict, "")
def upgrade_state_dict_named(self, state_dict, name):
assert state_dict is not None
def do_upgrade(m, prefix):
if len(prefix) > 0: prefix += "."
for n, c in m.named_children():
name = prefix + n
if hasattr(c, "upgrade_state_dict_named"): c.upgrade_state_dict_named(state_dict, name)
elif hasattr(c, "upgrade_state_dict"): c.upgrade_state_dict(state_dict)
do_upgrade(c, name)
do_upgrade(self, name)
def make_generation_fast_(self, **kwargs):
if self._is_generation_fast: return
self._is_generation_fast = True
def apply_remove_weight_norm(module):
try:
nn.utils.remove_weight_norm(module)
except (AttributeError, ValueError):
return
self.apply(apply_remove_weight_norm)
def apply_make_generation_fast_(module, prefix):
if len(prefix) > 0: prefix += "."
base_func = BaseFairseqModel.make_generation_fast_
for n, m in module.named_modules():
if (m != self and hasattr(m, "make_generation_fast_") and m.make_generation_fast_.__func__ is not base_func): m.make_generation_fast_(name=prefix + n, **kwargs)
apply_make_generation_fast_(self, "")
self.eval()
class HubertConfig:
def __init__(self, _name, label_rate, encoder_layers_1, logit_temp_ctr, num_negatives, cross_sample_negatives, ctr_layers, extractor_mode = "default", encoder_layers = 12, encoder_embed_dim = 768, encoder_ffn_embed_dim = 3072, encoder_attention_heads = 12, activation_fn = "gelu", layer_type = "transformer", dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.0, encoder_layerdrop = 0.0, dropout_input = 0.0, dropout_features = 0.0, final_dim = 0, untie_final_proj = False, layer_norm_first = False, conv_feature_layers = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", conv_bias = False, logit_temp = 0.1, target_glu = False, feature_grad_mult = 1.0, mask_length = 10, mask_prob = 0.65, mask_selection = "static", mask_other = 0.0, no_mask_overlap = False, mask_min_space = 1, mask_channel_length = 10, mask_channel_prob = 0.0, mask_channel_selection = "static", mask_channel_other = 0.0, no_mask_channel_overlap = False, mask_channel_min_space = 1, conv_pos = 128, conv_pos_groups = 16, conv_pos_batch_norm = False, latent_temp = (2, 0.5, 0.999995), skip_masked = False, skip_nomask = False, checkpoint_activations = False, required_seq_len_multiple = 2, depthwise_conv_kernel_size = 31, attn_type = "", pos_enc_type = "abs", fp16 = False):
self._name = _name
self.label_rate = label_rate
self.encoder_layers_1 = encoder_layers_1
self.logit_temp_ctr = logit_temp_ctr
self.num_negatives = num_negatives
self.cross_sample_negatives = cross_sample_negatives
self.ctr_layers = ctr_layers
self.extractor_mode = extractor_mode
self.encoder_layers = encoder_layers
self.encoder_embed_dim = encoder_embed_dim
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
self.encoder_attention_heads = encoder_attention_heads
self.activation_fn = activation_fn
self.layer_type = layer_type
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.dropout_input = encoder_layerdrop
self.dropout_features = dropout_features
self.final_dim = final_dim
self.untie_final_proj = untie_final_proj
self.layer_norm_first = layer_norm_first
self.conv_feature_layers = conv_feature_layers
self.conv_bias = conv_bias
self.logit_temp = logit_temp
self.target_glu = target_glu
self.feature_grad_mult = feature_grad_mult
self.mask_length = mask_length
self.mask_prob = mask_prob
self.mask_selection = mask_selection
self.mask_other = mask_other
self.no_mask_overlap = no_mask_overlap
self.mask_min_space = mask_min_space
self.mask_channel_length = mask_channel_length
self.mask_channel_prob = mask_channel_prob
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.no_mask_channel_overlap = no_mask_channel_overlap
self.mask_channel_min_space = mask_channel_min_space
self.conv_pos = conv_pos
self.conv_pos_groups = conv_pos_groups
self.conv_pos_batch_norm = conv_pos_batch_norm
self.latent_temp = latent_temp
self.skip_masked = skip_masked
self.skip_nomask = skip_nomask
self.checkpoint_activations = checkpoint_activations
self.required_seq_len_multiple = required_seq_len_multiple
self.depthwise_conv_kernel_size = depthwise_conv_kernel_size
self.attn_type = attn_type
self.pos_enc_type = pos_enc_type
self.fp16 = fp16
class Model_Config(dict):
def __getattr__(*args):
val = dict.get(*args)
return Model_Config(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class HubertModel(BaseFairseqModel):
def __init__(self, cfg):
super().__init__()
feature_enc_layers = eval(cfg.conv_feature_layers)
self.embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias)
feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / 16000
self.post_extract_proj = (nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length = cfg.mask_length
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.logit_temp = cfg.logit_temp
self.skip_masked = cfg.skip_masked
self.skip_nomask = cfg.skip_nomask
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
self.mask_emb = nn.Parameter(torch.FloatTensor(cfg.encoder_embed_dim).uniform_())
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.target_glu = None
if cfg.target_glu: self.target_glu = nn.Sequential(nn.Linear(final_dim, final_dim * 2), nn.GLU())
self.untie_final_proj = cfg.untie_final_proj
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
self.num_classes = [504]
self.label_embs_concat = nn.Parameter(torch.FloatTensor(sum(self.num_classes), final_dim))
nn.init.uniform_(self.label_embs_concat)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
def apply_mask(self, x, padding_mask, target_list):
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = torch.from_numpy(compute_mask_indices((B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space)).to(x.device)
x[mask_indices] = self.mask_emb
else: mask_indices = None
if self.mask_channel_prob > 0: x[(torch.from_numpy(compute_mask_indices((B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space)).to(x.device).unsqueeze(1).expand(-1, T, -1))] = 0
return x, mask_indices
def compute_nce(self, x, pos, negs):
neg_is_pos = (pos == negs).all(-1)
logits = torch.cosine_similarity(x.float(), torch.cat([pos.unsqueeze(0), negs], dim=0).float(), dim=-1).type_as(x)
logits /= self.logit_temp
if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf")
return logits.transpose(0, 1)
def forward_features(self, source):
if self.feature_grad_mult > 0:
features = self.feature_extractor(source)
if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(source)
return features
def forward_targets(self, features, target_list):
feat_tsz = features.size(2)
targ_tsz = min([t.size(1) for t in target_list])
if self.feat2tar_ratio * feat_tsz > targ_tsz:
feat_tsz = int(targ_tsz / self.feat2tar_ratio)
features = features[..., :feat_tsz]
return features, [t[:, (torch.arange(feat_tsz).float() * self.feat2tar_ratio).long()] for t in target_list]
def forward_padding_mask(self, features, padding_mask):
extra = padding_mask.size(1) % features.size(1)
if extra > 0: padding_mask = padding_mask[:, :-extra]
return padding_mask.view(padding_mask.size(0), features.size(1), -1).all(-1)
def forward(self, source, target_list = None, padding_mask = None, mask = True, features_only = False, output_layer = None):
features = self.forward_features(source)
if target_list is not None: features, target_list = self.forward_targets(features, target_list)
features_pen = features.float().pow(2).mean()
features = self.layer_norm(features.transpose(1, 2))
unmasked_features = features.clone()
if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None: features = self.post_extract_proj(features)
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list)
else: x, mask_indices = features, None
x, _ = self.encoder(x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1)
if features_only: return {"x": x, "padding_mask": padding_mask, "features": features}
def compute_pred(proj_x, target, label_embs):
y = torch.index_select(label_embs, 0, target.long())
negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)
if self.target_glu:
y = self.target_glu(y)
negs = self.target_glu(negs)
return self.compute_nce(proj_x, y, negs)
label_embs_list = self.label_embs_concat.split(self.num_classes, 0)
if not self.skip_masked:
masked_indices = torch.logical_and(~padding_mask, mask_indices)
proj_x_m = self.final_proj(x[masked_indices])
logit_m_list = [compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) for i, (proj_x_m, t) in enumerate(zip(proj_x_m.chunk(len(target_list), dim=-1) if self.untie_final_proj else [proj_x_m for _ in range(len(target_list))], target_list))]
else: logit_m_list = [None for _ in target_list]
if not self.skip_nomask:
nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
proj_x_u = self.final_proj(x[nomask_indices])
logit_u_list = [compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) for i, (proj_x_u, t) in enumerate(zip(proj_x_u.chunk(len(target_list), dim=-1) if self.untie_final_proj else [proj_x_u for _ in range(len(target_list))], target_list))]
else: logit_u_list = [None for _ in target_list]
return {"logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen}
def extract_features(self, source, padding_mask = None, mask = False, ret_conv = False, output_layer = None):
res = self.forward(source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer)
return res["features"] if ret_conv else res["x"], res["padding_mask"]
def get_logits(self, net_output, is_masked=True):
return [x.float() for x in (net_output["logit_m_list"] if is_masked else net_output["logit_u_list"]) if x is not None]
def get_targets(self, net_output, is_masked=True):
return [x.new_zeros(x.size(0), dtype=torch.long) for x in self.get_logits(net_output, is_masked)]
def get_extra_losses(self, net_output):
extra_losses, names = [], []
if "features_pen" in net_output:
extra_losses.append(net_output["features_pen"])
names.append("features_pen")
return extra_losses, names
def remove_pretraining_modules(self):
self.target_glu = None
self.final_proj = None |