File size: 76,702 Bytes
6cfcfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
import re
import sys
import math
import uuid
import torch
import types
import contextlib

import numpy as np
import torch.nn.functional as F

from torch import nn
from omegaconf import DictConfig, open_dict

class Dictionary:
    def __init__(self, *args, **kwargs):
        pass

fairseq = types.ModuleType("fairseq")
fairseq_data = types.ModuleType("fairseq.data")
fairseq_data_dictionary = types.ModuleType("fairseq.data.dictionary")
fairseq_data_dictionary.Dictionary = Dictionary
fairseq.data = fairseq_data
fairseq_data.dictionary = fairseq_data_dictionary

sys.modules["fairseq"] = fairseq
sys.modules["fairseq.data"] = fairseq_data
sys.modules["fairseq.data.dictionary"] = fairseq_data_dictionary

def load_model(filename):
    state = torch.load(filename, map_location="cpu")

    model = HubertModel(HubertConfig(**state['cfg']['model']))
    model.load_state_dict(state['model'], strict=False)

    return [model], Model_Config(state["cfg"]), Model_Config(state["cfg"]["task"])

def softmax(x, dim, onnx_trace = False):
    return F.softmax(x.float(), dim=dim) if onnx_trace else F.softmax(x, dim=dim, dtype=torch.float32)

def log_softmax(x, dim, onnx_trace = False):
    return F.log_softmax(x.float(), dim=dim) if onnx_trace else F.log_softmax(x, dim=dim, dtype=torch.float32)

def eval_str_dict(x, type=dict):
    if x is None: return None
    if isinstance(x, str): x = eval(x)
    return x

def with_incremental_state(cls):
    cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls.__bases__ if b != FairseqIncrementalState)
    return cls

def quant_noise(module, p, block_size):
    if p <= 0: return module
    assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))

    is_conv = module.weight.ndim == 4
    if not is_conv: assert (module.weight.size(1) % block_size == 0)
    else:
        if module.kernel_size == (1, 1): assert (module.in_channels % block_size == 0)
        else:
            k = module.kernel_size[0] * module.kernel_size[1]
            assert k % block_size == 0

    def _forward_pre_hook(mod, input):
        if mod.training:
            if not is_conv:
                weight = mod.weight
                in_features = weight.size(1)
                out_features = weight.size(0)

                mask = torch.zeros(in_features // block_size * out_features, device=weight.device)
                mask.bernoulli_(p)
                mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
            else:
                weight = mod.weight
                in_channels = mod.in_channels
                out_channels = mod.out_channels

                if mod.kernel_size == (1, 1):
                    mask = torch.zeros(int(in_channels // block_size * out_channels), device=weight.device)
                    mask.bernoulli_(p)
                    mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
                else:
                    mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device)
                    mask.bernoulli_(p)
                    mask = (mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]))

            mask = mask.to(torch.bool)
            s = 1 / (1 - p)
            mod.weight.data = s * weight.masked_fill(mask, 0)

    module.register_forward_pre_hook(_forward_pre_hook)
    return module

class FairseqDropout(nn.Module):
    def __init__(self, p, module_name=None):
        super().__init__()
        self.p = p
        self.module_name = module_name
        self.apply_during_inference = False

    def forward(self, x, inplace = False):
        return F.dropout(x, p=self.p, training=True, inplace=inplace) if self.p > 0 and (self.training or self.apply_during_inference) else x

    def make_generation_fast_(self, name, retain_dropout = False, retain_dropout_modules = None, **kwargs):
        if retain_dropout:
            if (retain_dropout_modules is None or self.module_name in retain_dropout_modules): self.apply_during_inference = True

class FairseqIncrementalState(object):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.init_incremental_state()

    def init_incremental_state(self):
        self._incremental_state_id = str(uuid.uuid4())

    def _get_full_incremental_state_key(self, key):
        return "{}.{}".format(self._incremental_state_id, key)

    def get_incremental_state(self, incremental_state, key):
        full_key = self._get_full_incremental_state_key(key)
        if incremental_state is None or full_key not in incremental_state: return None
        return incremental_state[full_key]

    def set_incremental_state(self, incremental_state, key, value):
        if incremental_state is not None: incremental_state[self._get_full_incremental_state_key(key)] = value
        return incremental_state

class FairseqDecoder(nn.Module):
    def __init__(self, dictionary):
        super().__init__()
        self.dictionary = dictionary
        self.onnx_trace = False
        self.adaptive_softmax = None

    def forward(self, prev_output_tokens, encoder_out=None, **kwargs):
        x, extra = self.extract_features(prev_output_tokens, encoder_out=encoder_out, **kwargs)
        return self.output_layer(x), extra

    def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs):
        pass

    def output_layer(self, features, **kwargs):
        pass

    def get_normalized_probs(self, net_output, log_probs, sample = None):
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)

    def get_normalized_probs_scriptable(self, net_output, log_probs, sample = None):
        if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None:
            if sample is not None:
                assert "target" in sample
                target = sample["target"]
            else: target = None

            out = self.adaptive_softmax.get_log_prob(net_output[0], target=target)
            return out.exp_() if not log_probs else out

        logits = net_output[0]
        return log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace) if log_probs else softmax(logits, dim=-1, onnx_trace=self.onnx_trace)

    def max_positions(self):
        return 1e6

    def upgrade_state_dict_named(self, state_dict, name):
        return state_dict

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

@with_incremental_state
class FairseqIncrementalDecoder(FairseqDecoder):
    def __init__(self, dictionary):
        super().__init__(dictionary)

    def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs):
        pass

    def extract_features(self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs):
        pass

    def reorder_incremental_state(self, incremental_state, new_order):
        pass

    def reorder_incremental_state_scripting(self, incremental_state, new_order):
        for module in self.modules():
            if hasattr(module, "reorder_incremental_state"):
                result = module.reorder_incremental_state(incremental_state, new_order)
                if result is not None: incremental_state = result

    def set_beam_size(self, beam_size):
        if getattr(self, "_beam_size", -1) != beam_size:
            seen = set()

            def apply_set_beam_size(module):
                if (module != self and hasattr(module, "set_beam_size") and module not in seen):
                    seen.add(module)
                    module.set_beam_size(beam_size)

            self.apply(apply_set_beam_size)
            self._beam_size = beam_size

class MultiheadAttention(FairseqIncrementalDecoder):
    def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, dictionary=None, q_noise=0.0, qn_block_size=8, xformers_att_config=None, xformers_blocksparse_layout=None, xformers_blocksparse_blocksize=16):
        super().__init__(dictionary)
        xformers_att_config = eval_str_dict(xformers_att_config)
        self.use_xformers = xformers_att_config is not None
        if self.use_xformers: raise ImportError
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
        self.num_heads = num_heads
        self.dropout_module = FairseqDropout(dropout, module_name=self.__class__.__name__)
        self.head_dim = embed_dim // num_heads
        assert (self.head_dim * num_heads == self.embed_dim)
        self.scaling = self.head_dim**-0.5
        self.self_attention = self_attention
        self.encoder_decoder_attention = encoder_decoder_attention
        assert not self.self_attention or self.qkv_same_dim
        self.k_proj = quant_noise(nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size)
        self.v_proj = quant_noise(nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size)
        self.q_proj = quant_noise(nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)
        self.out_proj = quant_noise(nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)
        if add_bias_kv:
            self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim))
            self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim))
        else: self.bias_k = self.bias_v = None
        self.add_zero_attn = add_zero_attn
        self.beam_size = 1
        self.reset_parameters()
        self.onnx_trace = False
        self.skip_embed_dim_check = False
        self.init_incremental_state()

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def reset_parameters(self):
        if self.qkv_same_dim:
            nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
        else:
            nn.init.xavier_uniform_(self.k_proj.weight)
            nn.init.xavier_uniform_(self.v_proj.weight)
            nn.init.xavier_uniform_(self.q_proj.weight)

        nn.init.xavier_uniform_(self.out_proj.weight)

        if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0)
        if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k)
        if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v)

    def _get_reserve_head_index(self, num_heads_to_keep: int):
        k_proj_heads_norm, q_proj_heads_norm, v_proj_heads_norm = [], [], []
        for i in range(self.num_heads):
            start_idx = i * self.head_dim
            end_idx = (i + 1) * self.head_dim
            k_proj_heads_norm.append(torch.sum(torch.abs(self.k_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist())
            q_proj_heads_norm.append(torch.sum(torch.abs(self.q_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist())
            v_proj_heads_norm.append(torch.sum(torch.abs(self.v_proj.weight[start_idx:end_idx])).tolist() + torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist())

        heads_norm = []
        for i in range(self.num_heads):
            heads_norm.append(k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i])

        sorted_head_index = sorted(range(self.num_heads), key=lambda k: heads_norm[k], reverse=True)
        reserve_head_index = []
        for i in range(num_heads_to_keep):
            reserve_head_index.append((sorted_head_index[i] * self.head_dim, (sorted_head_index[i] + 1) * self.head_dim))
        return reserve_head_index

    def _adaptive_prune_heads(self, reserve_head_index):
        new_q_weight, new_q_bias, new_k_weight, new_k_bias, new_v_weight, new_v_bias, new_out_proj_weight = [], [], [], [], [], [], []

        for ele in reserve_head_index:
            start_idx, end_idx = ele
            new_q_weight.append(self.q_proj.weight[start_idx:end_idx])
            new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
            new_k_weight.append(self.k_proj.weight[start_idx:end_idx])
            new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
            new_v_weight.append(self.v_proj.weight[start_idx:end_idx])
            new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
            new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])

        new_q_weight = torch.cat(new_q_weight).detach()
        new_k_weight = torch.cat(new_k_weight).detach()
        new_v_weight = torch.cat(new_v_weight).detach()
        new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
        new_q_weight.requires_grad = True
        new_k_weight.requires_grad = True
        new_v_weight.requires_grad = True
        new_out_proj_weight.requires_grad = True
        new_q_bias = torch.cat(new_q_bias).detach()
        new_q_bias.requires_grad = True
        new_k_bias = torch.cat(new_k_bias).detach()
        new_k_bias.requires_grad = True
        new_v_bias = torch.cat(new_v_bias).detach()
        new_v_bias.requires_grad = True

        self.q_proj.weight = nn.Parameter(new_q_weight)
        self.q_proj.bias = nn.Parameter(new_q_bias)
        self.k_proj.weight = nn.Parameter(new_k_weight)
        self.k_proj.bias = nn.Parameter(new_k_bias)
        self.v_proj.weight = nn.Parameter(new_v_weight)
        self.v_proj.bias = nn.Parameter(new_v_bias)
        self.out_proj.weight = nn.Parameter(new_out_proj_weight)
        self.num_heads = len(reserve_head_index)
        self.embed_dim = self.head_dim * self.num_heads
        self.q_proj.out_features = self.embed_dim
        self.k_proj.out_features = self.embed_dim
        self.v_proj.out_features = self.embed_dim

    def _set_skip_embed_dim_check(self):
        self.skip_embed_dim_check = True

    def _pad_masks(self, key_padding_mask, attn_mask):
        if attn_mask is not None:
            shape = attn_mask.size()[:-1] + torch.Size([1])
            attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)

        if key_padding_mask is not None:
            shape = key_padding_mask.size()[:-1] + torch.Size([1])
            key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_zeros(shape)], dim=-1)

        return key_padding_mask, attn_mask

    def _add_bias(self, k, v, key_padding_mask, attn_mask, bsz):
        assert self.bias_k is not None or self.bias_v is not None
        key_padding_mask, attn_mask = self._pad_masks(key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        return torch.cat([k, self.bias_k.repeat(1, bsz, 1)]), torch.cat([v, self.bias_v.repeat(1, bsz, 1)]), key_padding_mask, attn_mask

    def _append_zero_attn(self, k, v, key_padding_mask, attn_mask):
        zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
        key_padding_mask, attn_mask = self._pad_masks(key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        return torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2), torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2), key_padding_mask, attn_mask

    def forward(self, query, key, value, key_padding_mask = None, incremental_state = None, need_weights = True, static_kv = False, attn_mask = None, before_softmax = False, need_head_weights = False):
        if need_head_weights: need_weights = True
        is_tpu = query.device.type == "xla"
        tgt_len, bsz, embed_dim = query.size()
        src_len = tgt_len
        
        if not self.skip_embed_dim_check: assert (embed_dim == self.embed_dim)
        assert list(query.size()) == [tgt_len, bsz, embed_dim]

        if key is not None:
            src_len, key_bsz, _ = key.size()
            if not torch.jit.is_scripting():
                assert value is not None
                assert src_len, key_bsz == value.shape[:2]

        if (not self.onnx_trace and not is_tpu and incremental_state is None and not static_kv and not torch.jit.is_scripting() and not self.skip_embed_dim_check):
            assert key is not None and value is not None
            return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask.bool() if key_padding_mask is not None else None, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight)

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else: saved_state = None

        if self.self_attention:
            q = self.q_proj(query)
            k = self.k_proj(query)
            v = self.v_proj(query)
        elif self.encoder_decoder_attention:
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                if self.beam_size > 1 and bsz == key.size(1):
                    key = key.view(key.size(0), -1, self.beam_size, key.size(2))[:, :, 0, :]
                    if key_padding_mask is not None: key_padding_mask = key_padding_mask.view(-1, self.beam_size, key_padding_mask.size(1))[:, 0, :]
                k = self.k_proj(key)
                v = self.v_proj(key)
        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)

        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k, v, attn_mask, key_padding_mask = self._add_bias(k, v, attn_mask, key_padding_mask, bsz)

        q = (q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1))
        kv_bsz = bsz 

        if k is not None:
            kv_bsz = k.size(1)
            k = (k.contiguous().view(-1, kv_bsz * self.num_heads, self.head_dim).transpose(0, 1))

        if v is not None: v = (v.contiguous().view(-1, kv_bsz * self.num_heads, self.head_dim).transpose(0, 1))

        if saved_state is not None:
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None

                kv_bsz = _prev_key.size(0)
                prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)

                if static_kv: k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
                src_len = k.size(1)

            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None or kv_bsz == _prev_value.size(0)
                prev_value = _prev_value.view(kv_bsz * self.num_heads, -1, self.head_dim)

                if static_kv: v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)

            prev_key_padding_mask = None
            if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"]

            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=kv_bsz, src_len=k.size(1), static_kv=static_kv)

            saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_value"] = v.view(kv_bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_key_padding_mask"] = key_padding_mask

            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state, saved_state)

        assert k is not None
        assert k.size(1) == src_len

        if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == kv_bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k, v, key_padding_mask, attn_mask = self._append_zero_attn(k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask)

        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn_weights = torch.einsum("bxhtd,bhsd->bxhts", q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]), k.view((kv_bsz, self.num_heads) + k.size()[1:]))
            attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
        else: attn_weights = torch.bmm(q, k.transpose(1, 2))

        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(kv_bsz, -1, self.num_heads, tgt_len, src_len).masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3).to(torch.bool), float("-inf")) if not is_tpu else attn_weights.transpose(0, 2).masked_fill(key_padding_mask, float("-inf")).transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if before_softmax: return attn_weights, v

        attn_weights_float = softmax(attn_weights, dim=-1, onnx_trace=self.onnx_trace)
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = self.dropout_module(attn_weights)

        assert v is not None
        attn = None

        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn = torch.einsum("bxhts,bhsd->bxhtd", attn_probs.view((kv_bsz, -1, self.num_heads) + attn_probs.size()[1:]), v.view((kv_bsz, self.num_heads) + v.size()[1:]))
            attn = attn.reshape((-1,) + attn.size()[-2:])
        else: attn = torch.bmm(attn_probs, v)
        assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]

        if self.onnx_trace and attn.size(1) == 1: attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
        else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)

        attn = self.out_proj(attn)
        attn_weights = None

        if need_weights:
            attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
            if not need_head_weights: attn_weights = attn_weights.mean(dim=0)

        return attn, attn_weights

    @staticmethod
    def _append_prev_key_padding_mask(key_padding_mask, prev_key_padding_mask, batch_size, src_len, static_kv):
        if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask
        elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), key_padding_mask.float()], dim=1)
        elif prev_key_padding_mask is not None:
            if src_len > prev_key_padding_mask.size(1):
                filler = torch.zeros((batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device)
                new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1)
            else: new_key_padding_mask = prev_key_padding_mask.float()
        elif key_padding_mask is not None:
            if src_len > key_padding_mask.size(1):
                filler = torch.zeros((batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device)
                new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1)
            else: new_key_padding_mask = key_padding_mask.float()
        else: new_key_padding_mask = prev_key_padding_mask
        return new_key_padding_mask

    @torch.jit.export
    def reorder_incremental_state(self, incremental_state, new_order):
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            for k in input_buffer.keys():
                input_buffer_k = input_buffer[k]
                if input_buffer_k is not None:
                    if self.encoder_decoder_attention:
                        if input_buffer_k.size(0) * self.beam_size == new_order.size(0): return incremental_state
                        elif self.beam_size > 1: input_buffer[k] = input_buffer_k.index_select(0, new_order.reshape(-1, self.beam_size)[:, 0] // self.beam_size)
                        else: input_buffer[k] = input_buffer_k.index_select(0, new_order)
                    else: input_buffer[k] = input_buffer_k.index_select(0, new_order)
            incremental_state = self._set_input_buffer(incremental_state, input_buffer)
        return incremental_state

    def set_beam_size(self, beam_size):
        self.beam_size = beam_size

    def _get_input_buffer(self, incremental_state):
        result = self.get_incremental_state(incremental_state, "attn_state")
        if result is not None: return result
        else: return {}

    def _set_input_buffer(self, incremental_state, buffer):
        return self.set_incremental_state(incremental_state, "attn_state", buffer)

    def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
        return attn_weights

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""
        items_to_add = {}
        keys_to_remove = []
        for k in state_dict.keys():
            if k.endswith(prefix + "in_proj_weight"):
                dim = int(state_dict[k].shape[0] / 3)
                items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
                items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
                items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
                keys_to_remove.append(k)
                k_bias = prefix + "in_proj_bias"
                if k_bias in state_dict.keys():
                    dim = int(state_dict[k].shape[0] / 3)
                    items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
                    items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][dim : 2 * dim]
                    items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
                    keys_to_remove.append(prefix + "in_proj_bias")

        for k in keys_to_remove:
            del state_dict[k]

        for key, value in items_to_add.items():
            state_dict[key] = value

def init_bert_params(module):
    def normal_(data):
        data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))

    if isinstance(module, nn.Linear):
        normal_(module.weight.data)
        if module.bias is not None: module.bias.data.zero_()
    if isinstance(module, nn.Embedding):
        normal_(module.weight.data)
        if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
    if isinstance(module, MultiheadAttention):
        normal_(module.q_proj.weight.data)
        normal_(module.k_proj.weight.data)
        normal_(module.v_proj.weight.data)

def make_conv_pos(e, k, g):
    pos_conv = nn.Conv1d(e, e, kernel_size=k, padding=k // 2, groups=g)
    dropout = 0

    nn.init.normal_(pos_conv.weight, mean=0, std=math.sqrt((4 * (1.0 - dropout)) / (k * e)))
    nn.init.constant_(pos_conv.bias, 0)

    return nn.Sequential(nn.utils.parametrizations.weight_norm(pos_conv, name="weight", dim=2), SamePad(k), nn.GELU())

def is_xla_tensor(tensor):
    return torch.is_tensor(tensor) and tensor.device.type == "xla"

def index_put(tensor, indices, value):
    if is_xla_tensor(tensor):
        for _ in range(indices.dim(), tensor.dim()): 
            indices = indices.unsqueeze(-1)

        if indices.size(-1) < tensor.size(-1): indices = indices.expand_as(tensor)
        tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices)
    else: tensor[indices] = value

    return tensor

def pad_to_multiple(x, multiple, dim=-1, value=0):
    if x is None: return None, 0
    tsz = x.size(dim)
    m = tsz / multiple
    remainder = math.ceil(m) * multiple - tsz
    if m.is_integer(): return x, 0
    return F.pad(x, (*((0,) * (-1 - dim) * 2), 0, remainder), value=value), remainder

def compute_mask_indices(shape, padding_mask, mask_prob, mask_length, mask_type = "static", mask_other = 0.0, min_masks = 0, no_overlap = False, min_space = 0, require_same_masks = True, mask_dropout = 0.0, add_masks = False, seed = None, epoch = None, indices = None, idc_select_ver = 1, num_mask_ver = 2):
    bsz, all_sz = shape
    mask = np.full((bsz, all_sz), False)

    if num_mask_ver == 1: all_num_mask = max(min_masks, int(mask_prob * all_sz / float(mask_length) + np.random.rand()))
    mask_idcs = []

    for i in range(bsz):
        seed_i = int(hash((seed, epoch, indices[i].item())) % 1e6) if seed is not None and epoch is not None and indices is not None else None
        rng = np.random.default_rng(seed_i)

        if padding_mask is not None:
            sz = all_sz - padding_mask[i].long().sum().item()
            assert sz >= 0, sz
        else: sz = all_sz

        if num_mask_ver == 1: num_mask = max(min_masks, int(mask_prob * sz / float(mask_length) + np.random.rand())) if padding_mask is not None else all_num_mask
        elif num_mask_ver == 2: num_mask = max(min_masks, int(mask_prob * sz / float(mask_length) + rng.random()))
        else: raise ValueError

        if mask_type == "static": lengths = np.full(num_mask, mask_length)
        elif mask_type == "uniform": lengths = rng.randint(mask_other, mask_length * 2 + 1, size=num_mask)
        elif mask_type == "normal": lengths = [max(1, int(round(x))) for x in rng.normal(mask_length, mask_other, size=num_mask)]
        elif mask_type == "poisson": lengths = [int(round(x)) for x in rng.poisson(mask_length, size=num_mask)]
        else: raise Exception

        if sum(lengths) == 0:
            if mask_type == "static": raise ValueError
            else: lengths = [min(mask_length, sz - 1)]

        if no_overlap:
            mask_idc = []

            def arrange(s, e, length, keep_length):
                span_start = rng.randint(s, e - length)
                mask_idc.extend(span_start + i for i in range(length))
                new_parts = []

                if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1))
                if e - span_start - length - min_space > keep_length: new_parts.append((span_start + length + min_space, e))

                return new_parts

            parts = [(0, sz)]
            min_length = min(lengths)

            for length in sorted(lengths, reverse=True):
                lens = np.fromiter((e - s if e - s >= length + min_space else 0 for s, e in parts), np.int32)
                l_sum = np.sum(lens)
                if l_sum == 0: break
                s, e = parts.pop(rng.choice(len(parts), p=lens / np.sum(lens)))
                parts.extend(arrange(s, e, length, min_length))
            mask_idc = np.asarray(mask_idc)
        else:
            if idc_select_ver == 1:
                min_len = min(lengths)
                if sz - min_len <= num_mask: min_len = sz - num_mask - 1
                mask_idc = rng.choice(sz - min_len, num_mask, replace=False)
            elif idc_select_ver == 2: mask_idc = rng.choice(sz, num_mask, replace=False)
            else: raise ValueError

            mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])])

        mask_idc = np.unique(mask_idc[mask_idc < sz])
        if len(mask_idc) >= sz: raise ValueError
        mask_idcs.append(mask_idc)

    target_len = None
    if require_same_masks: target_len = max([len(m) for m in mask_idcs]) if add_masks else min([len(m) for m in mask_idcs])

    for i, mask_idc in enumerate(mask_idcs):
        if target_len is not None and len(mask_idc) > target_len: mask_idc = rng.choice(mask_idc, target_len, replace=False)
        mask[i, mask_idc] = True

        if target_len is not None and len(mask_idc) < target_len:
            to_mask = rng.choice(np.flatnonzero(~mask[i]), target_len - len(mask_idc), replace=False)
            mask[i, to_mask] = True

        if mask_dropout > 0:
            masked = np.flatnonzero(mask[i])
            mask[i, rng.choice(masked, np.rint(len(masked) * mask_dropout).astype(int), replace=False)] = False

    return mask

def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True):
    return nn.LayerNorm(normalized_shape, eps, elementwise_affine)

def prune_state_dict(state_dict, model_cfg):
    arch = None
    if model_cfg is not None: arch = (model_cfg._name if isinstance(model_cfg, DictConfig) else getattr(model_cfg, "arch", None))

    if not model_cfg or arch is None or arch == "ptt_transformer": return state_dict

    encoder_layers_to_keep = getattr(model_cfg, "encoder_layers_to_keep", None)
    decoder_layers_to_keep = getattr(model_cfg, "decoder_layers_to_keep", None)

    if not encoder_layers_to_keep and not decoder_layers_to_keep: return state_dict

    def create_pruning_pass(layers_to_keep, layer_name):
        keep_layers = sorted(int(layer_string) for layer_string in layers_to_keep.split(","))
        mapping_dict = {}
        for i in range(len(keep_layers)):
            mapping_dict[str(keep_layers[i])] = str(i)

        return {"substitution_regex": re.compile(r"^{layer}.*\.layers\.(\d+)".format(layer=layer_name)), "mapping_dict": mapping_dict}

    pruning_passes = []
    new_state_dict = {}

    if encoder_layers_to_keep: pruning_passes.append(create_pruning_pass(encoder_layers_to_keep, "encoder"))
    if decoder_layers_to_keep: pruning_passes.append(create_pruning_pass(decoder_layers_to_keep, "decoder"))

    for layer_name in state_dict.keys():
        match = re.search(r"\.layers\.(\d+)\.", layer_name)
        if not match:
            new_state_dict[layer_name] = state_dict[layer_name]
            continue

        original_layer_number = match.group(1)
        for pruning_pass in pruning_passes:
            if original_layer_number in pruning_pass["mapping_dict"] and pruning_pass["substitution_regex"].search(layer_name):
                substitution_match = pruning_pass["substitution_regex"].search(layer_name)
                new_state_dict[(layer_name[: substitution_match.start(1)] + pruning_pass["mapping_dict"][original_layer_number] + layer_name[substitution_match.end(1) :])] = state_dict[layer_name]

    with open_dict(model_cfg) if isinstance(model_cfg, DictConfig) else contextlib.ExitStack():
        if hasattr(model_cfg, "encoder_layers_to_keep"): model_cfg.encoder_layers_to_keep = None
        if hasattr(model_cfg, "decoder_layers_to_keep"): model_cfg.decoder_layers_to_keep = None

    return new_state_dict

def relu_squared(x):
    return F.relu(x).pow(2)

def get_activation_fn(activation):
    def gelu(x):
        return nn.functional.gelu(x.float()).type_as(x)
    
    def gelu_accurate(x):
        if not hasattr(gelu_accurate, "_a"):
            gelu_accurate._a = math.sqrt(2 / math.pi)
            return (0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))))

    if activation == "relu": return F.relu
    elif activation == "relu_squared": return relu_squared
    elif activation == "gelu": return gelu
    elif activation == "gelu_fast": return gelu_accurate
    elif activation == "gelu_accurate": return gelu_accurate
    elif activation == "tanh": return torch.tanh
    elif activation == "linear": return lambda x: x
    elif activation == "swish": return nn.SiLU
    else: raise RuntimeError

class SamePad(nn.Module):
    def __init__(self, kernel_size, causal=False):
        super().__init__()
        if causal: self.remove = kernel_size - 1
        else: self.remove = 1 if kernel_size % 2 == 0 else 0

    def forward(self, x):
        if self.remove > 0: x = x[:, :, : -self.remove]
        return x

class TransformerSentenceEncoderLayer(nn.Module):
    def __init__(self, embedding_dim = 768, ffn_embedding_dim = 3072, num_attention_heads = 8, dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.1, activation_fn = "relu", layer_norm_first = False):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout
        self.activation_fn = get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)
        self.layer_norm_first = layer_norm_first
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
        self.final_layer_norm = LayerNorm(self.embedding_dim)

    def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None):
        residual = x

        if self.layer_norm_first:
            x = self.self_attn_layer_norm(x)
            x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, need_weights=False)
            x = residual + self.dropout1(x)
            residual = x
            x = self.fc2(self.dropout2(self.activation_fn(self.fc1(self.final_layer_norm(x)))))
            layer_result = x
            x = residual + self.dropout3(x)
        else:
            x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False)
            x = self.self_attn_layer_norm(residual + self.dropout1(x))
            residual = x
            x = self.fc2(self.dropout2(self.activation_fn(self.fc1(x))))
            layer_result = x
            x = self.final_layer_norm(residual + self.dropout3(x))

        return x, (attn, layer_result)

class AdapterFast(nn.Module):
    def __init__(self, adapter_num, input_dim, hidden_dim, act_fn):
        super().__init__()
        self.adapter_num = adapter_num
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim))
        self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim))
        self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim))
        self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim))
        self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim))
        self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim))
        self.act_fn = nn.Identity()
        if act_fn == "relu": self.act_fn = nn.ReLU()
        elif act_fn == "gelu": self.act_fn = nn.GELU()
        elif act_fn == "selu": self.act_fn = nn.SELU()
        else: raise ValueError

        self.input_dim = input_dim
        self.reset_parameters()

    def reset_parameters(self):
        for ii in range(self.adapter_num):
            nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5))
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii])
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            nn.init.uniform_(self.b_a[ii], -bound, bound)
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii])
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            nn.init.uniform_(self.b_b[ii], -bound, bound)
        
        nn.init.ones_(self.ln_W)
        nn.init.zeros_(self.ln_b)

    def forward(self, x, adapter_id):
        ii = adapter_id
        return F.linear(self.act_fn(F.linear(F.layer_norm(x, (self.input_dim, ), self.ln_W[ii], self.ln_b[ii]), self.W_a[ii], self.b_a[ii])), self.W_b[ii], self.b_b[ii])
    
    def extra_repr(self):
        return ('adapter={}, input_dim={}, hidden_dim={}'.format(self.adapter_num, self.input_dim, self.hidden_dim))

class FeedForwardModule(nn.Module):
    def __init__(self, input_feat, hidden_units, dropout1, dropout2, activation_fn="swish", bias=True):
        super(FeedForwardModule, self).__init__()
        self.layer_norm = LayerNorm(input_feat)
        self.w_1 = nn.Linear(input_feat, hidden_units, bias=bias)
        self.w_2 = nn.Linear(hidden_units, input_feat, bias=bias)
        self.dropout1 = nn.Dropout(dropout1)
        self.dropout2 = nn.Dropout(dropout2)
        self.activation = get_activation_fn(activation_fn)(hidden_units)

    def forward(self, x):
        return self.dropout2(self.w_2(self.dropout1(self.activation(self.w_1(self.layer_norm(x))))))

class ConvolutionModule(nn.Module):
    def __init__(self, embed_dim, channels, depthwise_kernel_size, dropout, activation_fn="swish", bias=False, export=False):
        super(ConvolutionModule, self).__init__()
        assert (depthwise_kernel_size - 1) % 2 == 0
        self.layer_norm = LayerNorm(embed_dim, export=export)
        self.pointwise_conv1 = nn.Conv1d(embed_dim, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias)
        self.glu = nn.GLU(dim=1)
        self.depthwise_conv = nn.Conv1d(channels, channels, depthwise_kernel_size, stride=1, padding=(depthwise_kernel_size - 1) // 2, groups=channels, bias=bias)
        self.batch_norm = nn.BatchNorm1d(channels)
        self.activation = get_activation_fn(activation_fn)(channels)
        self.pointwise_conv2 = nn.Conv1d(channels, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.pointwise_conv2(self.activation(self.batch_norm(self.depthwise_conv(self.glu(self.pointwise_conv1(self.layer_norm(x).transpose(1, 2)))))))).transpose(1, 2)

def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)

def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
    cos, sin = (cos[offset : q.shape[0] + offset, ...], sin[offset : q.shape[0] + offset, ...])
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)

class RotaryPositionalEmbedding(nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = 0
        self.cos_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
        self.sin_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
        self.precision = precision

    def forward(self, x, seq_len = 0):
        if seq_len > self.seq_len_cached:
            self.seq_len_cached = seq_len
            freqs = torch.einsum("i,j->ij", torch.arange(seq_len, device=x.device).type_as(self.inv_freq), self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos().view(emb.size(0), 1, 1, emb.size(1))
            self.sin_cached = emb.sin().view(emb.size(0), 1, 1, emb.size(1))
        return self.cos_cached, self.sin_cached

class ESPNETMultiHeadedAttention(nn.Module):
    def __init__(self, n_feat, n_head, dropout):
        super(ESPNETMultiHeadedAttention, self).__init__()
        assert n_feat % n_head == 0
        self.d_k = n_feat // n_head
        self.h = n_head
        self.linear_q = nn.Linear(n_feat, n_feat)
        self.linear_k = nn.Linear(n_feat, n_feat)
        self.linear_v = nn.Linear(n_feat, n_feat)
        self.linear_out = nn.Linear(n_feat, n_feat)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward_qkv(self, query, key, value, **kwargs):
        n_batch = query.size(0)
        return self.linear_q(query).view(n_batch, -1, self.h, self.d_k).transpose(1, 2), self.linear_k(key).view(n_batch, -1, self.h, self.d_k).transpose(1, 2), self.linear_v(value).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)

    def forward_attention(self, value, scores, mask):
        n_batch = value.size(0)

        if mask is not None:
            scores = scores.masked_fill(mask.unsqueeze(1).unsqueeze(2).to(bool), float("-inf"))
            self.attn = torch.softmax(scores, dim=-1)
        else: self.attn = torch.softmax(scores, dim=-1)

        return self.linear_out((torch.matmul(self.dropout(self.attn), value).transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k))) 

    def forward(self, query, key, value, key_padding_mask=None, **kwargs):
        q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
        return self.forward_attention(v, torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None

class RelPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
    def __init__(self, n_feat, n_head, dropout, zero_triu=False):
        super().__init__(n_feat, n_head, dropout)
        self.zero_triu = zero_triu
        self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
        self.pos_bias_u = nn.Parameter(torch.zeros(self.h, self.d_k))
        self.pos_bias_v = nn.Parameter(torch.zeros(self.h, self.d_k))
        nn.init.xavier_uniform_(self.pos_bias_u)
        nn.init.xavier_uniform_(self.pos_bias_v)

    def rel_shift(self, x):
        x = torch.cat([torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype), x], dim=-1).view(*x.size()[:2], x.size(3) + 1, x.size(2))[:, :, 1:].view_as(x)[:, :, :, : x.size(-1) // 2 + 1]
        if self.zero_triu: x = x * torch.tril(torch.ones((x.size(2), x.size(3)), device=x.device), x.size(3) - x.size(2))[None, None, :, :]
        return x

    def forward(self, query, key, value, pos_emb, key_padding_mask=None, **kwargs):
        pos_emb = pos_emb.transpose(0, 1)
        q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
        q = q.transpose(1, 2)

        return self.forward_attention(v, (torch.matmul((q + self.pos_bias_u).transpose(1, 2), k.transpose(-2, -1)) + self.rel_shift(torch.matmul((q + self.pos_bias_v).transpose(1, 2), self.linear_pos(pos_emb).view(pos_emb.size(0), -1, self.h, self.d_k).transpose(1, 2).transpose(-2, -1)))) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None

class RotaryPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
    def __init__(self, n_feat, n_head, dropout, precision, rotary_emd_base=10000):
        super().__init__(n_feat, n_head, dropout)
        precision = torch.float
        self.rotary_ndims = self.d_k
        if precision == "fp16": precision = torch.half
        self.rotary_emb = RotaryPositionalEmbedding(self.rotary_ndims, base=rotary_emd_base, precision=precision)

    def forward(self, query, key, value, key_padding_mask=None, **kwargs):
        T, B, C = value.size()
        query = query.view(T, B, self.h, self.d_k)
        key = key.view(T, B, self.h, self.d_k)
        value = value.view(T, B, self.h, self.d_k)

        cos, sin = self.rotary_emb(value, seq_len=T)
        query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=0)

        query = query.view(T, B, self.h * self.d_k)
        key = key.view(T, B, self.h * self.d_k)
        value = value.view(T, B, self.h * self.d_k)

        q, k, v = self.forward_qkv(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1))
        return self.forward_attention(v, torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k), key_padding_mask).transpose(0, 1), None

class ConformerEncoderLayer(nn.Module):
    def __init__(self, embed_dim, ffn_embed_dim, attention_heads, dropout, use_fp16, depthwise_conv_kernel_size=31, activation_fn="swish", attn_type=None, pos_enc_type="abs"):
        self.pos_enc_type = pos_enc_type
        super(ConformerEncoderLayer, self).__init__()
        self.ffn1 = FeedForwardModule(embed_dim, ffn_embed_dim, dropout, dropout)
        self.self_attn_layer_norm = LayerNorm(embed_dim, export=False)
        self.self_attn_dropout = nn.Dropout(dropout)

        if attn_type == "espnet":
            if self.pos_enc_type == "rel_pos": self.self_attn = RelPositionMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout)
            elif self.pos_enc_type == "rope": self.self_attn = RotaryPositionMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout, precision=use_fp16)
            elif self.pos_enc_type == "abs": self.self_attn = ESPNETMultiHeadedAttention(embed_dim, attention_heads, dropout=dropout)
            else: raise Exception
        else: self.self_attn = MultiheadAttention(embed_dim, attention_heads, dropout=dropout)

        self.conv_module = ConvolutionModule(embed_dim=embed_dim, channels=embed_dim, depthwise_kernel_size=depthwise_conv_kernel_size, dropout=dropout, activation_fn=activation_fn)
        self.ffn2 = FeedForwardModule(embed_dim, ffn_embed_dim, dropout, dropout, activation_fn=activation_fn)
        self.final_layer_norm = LayerNorm(embed_dim, export=False)

    def forward(self, x, encoder_padding_mask, position_emb = None):
        residual = x
        x = self.ffn1(x) * 0.5 + residual
        residual = x
        x = self.self_attn_layer_norm(x)

        if self.pos_enc_type == "rel_pos": x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, pos_emb=position_emb, need_weights=False)
        else: x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False)

        x = self.self_attn_dropout(x)
        x = x + residual
        residual = x
        x = residual + self.conv_module(x.transpose(0, 1)).transpose(0, 1)
        residual = x
        x = self.ffn2(x)
        layer_result = x
        x = self.final_layer_norm(x * 0.5 + residual)

        return x, (attn, layer_result)

class ConformerWav2Vec2EncoderLayer(ConformerEncoderLayer):
    def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None, position_emb=None):
        return super().forward(x, self_attn_padding_mask, position_emb)

class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer):
    def __init__(self, embedding_dim = 768, ffn_embedding_dim = 3072, num_attention_heads = 8, dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.1, activation_fn = "relu", layer_norm_first = False, adapter_num=201, adapter_dim=64, adapter_act_fn="relu"):
        super().__init__(embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, layer_norm_first=layer_norm_first)
        self.adapter_num = adapter_num
        self.adapter_dim = adapter_dim
        self.adapter_layer = AdapterFast(adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn)

    def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None, need_weights=False, att_args=None, corpus_key=None):

        x, (attn, layer_result) = super().forward(x=x, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_weights=need_weights, att_args=att_args)
        assert corpus_key is not None
        assert len(set(corpus_key)) == 1

        return x + self.adapter_layer(x, corpus_key[0]), (attn, layer_result)

class TransposeLast(nn.Module):
    def __init__(self, deconstruct_idx=None, tranpose_dim=-2):
        super().__init__()
        self.deconstruct_idx = deconstruct_idx
        self.tranpose_dim = tranpose_dim

    def forward(self, x):
        if self.deconstruct_idx is not None: x = x[self.deconstruct_idx]
        return x.transpose(self.tranpose_dim, -1)

class TransformerEncoder(nn.Module):
    def build_encoder_layer(self, args, **kwargs):
        if args.layer_type == "transformer": layer = TransformerSentenceEncoderLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first)
        elif args.layer_type == "conformer": layer = ConformerWav2Vec2EncoderLayer(embed_dim=self.embedding_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, dropout=args.dropout, depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, activation_fn="swish", attn_type=args.attn_type, use_fp16=args.fp16, pos_enc_type="abs")
        elif args.layer_type == "trf_adp":
            use_adp = False
            if args.adp_trf_idx == "all": use_adp = True
            else: 
                if kwargs.get("layer_idx", None) in list(range(*[int(g) for g in args.adp_trf_idx.split(":")])): use_adp = True

            layer = TransformerSentenceEncoderWithAdapterLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, adapter_num=args.adp_num, adapter_dim=args.adp_dim, adapter_act_fn=args.adp_act_fn) if use_adp else TransformerSentenceEncoderLayer(embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first,)

        return layer

    def __init__(self, args):
        super().__init__()
        self.dropout = args.dropout
        self.embedding_dim = args.encoder_embed_dim
        self.required_seq_len_multiple = args.required_seq_len_multiple
        pos_conv_depth = getattr(args, "pos_conv_depth", 1)

        if pos_conv_depth > 1:
            num_layers = args.pos_conv_depth
            k = max(3, args.conv_pos // num_layers)

            def make_conv_block(e, k, g, l):
                return nn.Sequential(*[nn.Sequential(nn.Conv1d(e, e, kernel_size=k, padding=k // 2, groups=g), SamePad(k), TransposeLast(), LayerNorm(e, elementwise_affine=False), TransposeLast(), nn.GELU()) for _ in range(l)])

            self.pos_conv = make_conv_block(self.embedding_dim, k, args.conv_pos_groups, num_layers)
        else: self.pos_conv = make_conv_pos(self.embedding_dim, args.conv_pos, args.conv_pos_groups)

        self.layers = nn.ModuleList([self.build_encoder_layer(args, layer_idx=ii) for ii in range(args.encoder_layers)])
        self.layer_norm_first = args.layer_norm_first
        self.layer_norm = LayerNorm(self.embedding_dim)
        self.layerdrop = args.encoder_layerdrop
        self.apply(init_bert_params)

    def forward(self, x, padding_mask=None, layer=None, corpus_key=None):
        x, layer_results = self.extract_features(x, padding_mask, layer, corpus_key=corpus_key)

        if self.layer_norm_first and layer is None: x = self.layer_norm(x)
        return x, layer_results

    def extract_features(self, x, padding_mask=None, tgt_layer=None, min_layer=0, corpus_key=None):
        if padding_mask is not None: x = index_put(x, padding_mask, 0)
        x = x + self.pos_conv(x.transpose(1, 2)).transpose(1, 2)

        if not self.layer_norm_first: x = self.layer_norm(x)
        x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)

        if pad_length > 0 and padding_mask is None:
            padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
            padding_mask[:, -pad_length:] = True
        else: padding_mask, _ = pad_to_multiple(padding_mask, self.required_seq_len_multiple, dim=-1, value=True)

        x = F.dropout(x, p=self.dropout, training=self.training).transpose(0, 1)
        layer_results = []
        r = None

        for i, layer in enumerate(self.layers):
            dropout_probability = np.random.random() if self.layerdrop > 0 else 1
            if not self.training or (dropout_probability > self.layerdrop):
                layer_check = layer

                if (corpus_key is None) or (not isinstance(layer_check, (TransformerSentenceEncoderWithAdapterLayer))): x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask, need_weights=False)
                else: x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, corpus_key=corpus_key)

                if i >= min_layer: layer_results.append((x, z, lr))
            if i == tgt_layer:
                r = x
                break

        if r is not None: x = r
        x = x.transpose(0, 1)

        if pad_length > 0:
            x = x[:, :-pad_length]
            def undo_pad(a, b, c):
                return (a[:-pad_length], b[:-pad_length] if b is not None else b, c[:-pad_length])

            layer_results = [undo_pad(*u) for u in layer_results]

        return x, layer_results

    def max_positions(self):
        return self.args.max_positions

    def upgrade_state_dict_named(self, state_dict, name):
        return state_dict

class Fp32GroupNorm(nn.GroupNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, input):
        output = F.group_norm(input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps)
        return output.type_as(input)

class Fp32LayerNorm(nn.LayerNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, input):
        output = F.layer_norm(input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps)
        return output.type_as(input)

class ConvFeatureExtractionModel(nn.Module):
    def __init__(self, conv_layers, dropout = 0.0, mode = "default", conv_bias = False):
        super().__init__()
        assert mode in {"default", "layer_norm"}

        def block(n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False):
            def make_conv():
                conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
                nn.init.kaiming_normal_(conv.weight)
                return conv

            assert (is_layer_norm and is_group_norm) == False

            if is_layer_norm: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.Sequential(TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast()), nn.GELU())
            elif is_group_norm: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU())
            else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())

        in_d = 1
        self.conv_layers = nn.ModuleList()
        for i, cl in enumerate(conv_layers):
            assert len(cl) == 3
            (dim, k, stride) = cl
            self.conv_layers.append(block(in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias))
            in_d = dim

    def forward(self, x):
        x = x.unsqueeze(1)
        for conv in self.conv_layers:
            x = conv(x)

        return x

class GradMultiply(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, scale):
        ctx.scale = scale
        res = x.new(x)
        return res

    @staticmethod
    def backward(ctx, grad):
        return grad * ctx.scale, None

class BaseFairseqModel(nn.Module):
    def __init__(self):
        super().__init__()
        self._is_generation_fast = False

    def get_targets(self, sample, net_output):
        return sample["target"]

    def extract_features(self, *args, **kwargs):
        return self(*args, **kwargs)

    def load_state_dict(self, state_dict, strict=True, model_cfg = None, args = None):
        self.upgrade_state_dict(state_dict)
        new_state_dict = prune_state_dict(state_dict, model_cfg)
        return super().load_state_dict(new_state_dict, strict)

    def upgrade_state_dict(self, state_dict):
        self.upgrade_state_dict_named(state_dict, "")

    def upgrade_state_dict_named(self, state_dict, name):
        assert state_dict is not None

        def do_upgrade(m, prefix):
            if len(prefix) > 0: prefix += "."

            for n, c in m.named_children():
                name = prefix + n
                if hasattr(c, "upgrade_state_dict_named"): c.upgrade_state_dict_named(state_dict, name)
                elif hasattr(c, "upgrade_state_dict"): c.upgrade_state_dict(state_dict)
                do_upgrade(c, name)

        do_upgrade(self, name)

    def make_generation_fast_(self, **kwargs):
        if self._is_generation_fast: return
        self._is_generation_fast = True

        def apply_remove_weight_norm(module):
            try:
                nn.utils.remove_weight_norm(module)
            except (AttributeError, ValueError):
                return

        self.apply(apply_remove_weight_norm)

        def apply_make_generation_fast_(module, prefix):
            if len(prefix) > 0: prefix += "."

            base_func = BaseFairseqModel.make_generation_fast_
            for n, m in module.named_modules():
                if (m != self and hasattr(m, "make_generation_fast_") and m.make_generation_fast_.__func__ is not base_func): m.make_generation_fast_(name=prefix + n, **kwargs)

        apply_make_generation_fast_(self, "")
        self.eval()

class HubertConfig:
    def __init__(self, _name, label_rate, encoder_layers_1, logit_temp_ctr, num_negatives, cross_sample_negatives, ctr_layers, extractor_mode = "default", encoder_layers = 12, encoder_embed_dim = 768, encoder_ffn_embed_dim = 3072, encoder_attention_heads = 12, activation_fn = "gelu", layer_type = "transformer", dropout = 0.1, attention_dropout = 0.1, activation_dropout = 0.0, encoder_layerdrop = 0.0, dropout_input = 0.0, dropout_features = 0.0, final_dim = 0, untie_final_proj = False, layer_norm_first = False, conv_feature_layers = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", conv_bias = False, logit_temp = 0.1, target_glu = False, feature_grad_mult = 1.0, mask_length = 10, mask_prob = 0.65, mask_selection = "static", mask_other = 0.0, no_mask_overlap = False, mask_min_space = 1, mask_channel_length = 10, mask_channel_prob = 0.0, mask_channel_selection = "static", mask_channel_other = 0.0, no_mask_channel_overlap = False, mask_channel_min_space = 1, conv_pos = 128, conv_pos_groups = 16, conv_pos_batch_norm = False, latent_temp = (2, 0.5, 0.999995), skip_masked = False, skip_nomask = False, checkpoint_activations = False, required_seq_len_multiple = 2, depthwise_conv_kernel_size = 31, attn_type = "", pos_enc_type = "abs", fp16 = False):
        self._name = _name
        self.label_rate = label_rate
        self.encoder_layers_1 = encoder_layers_1
        self.logit_temp_ctr = logit_temp_ctr
        self.num_negatives = num_negatives
        self.cross_sample_negatives = cross_sample_negatives
        self.ctr_layers = ctr_layers
        self.extractor_mode = extractor_mode
        self.encoder_layers = encoder_layers
        self.encoder_embed_dim = encoder_embed_dim
        self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.activation_fn = activation_fn
        self.layer_type = layer_type
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.encoder_layerdrop = encoder_layerdrop
        self.dropout_input = encoder_layerdrop
        self.dropout_features = dropout_features
        self.final_dim = final_dim
        self.untie_final_proj = untie_final_proj
        self.layer_norm_first = layer_norm_first
        self.conv_feature_layers = conv_feature_layers
        self.conv_bias = conv_bias
        self.logit_temp = logit_temp
        self.target_glu = target_glu
        self.feature_grad_mult = feature_grad_mult
        self.mask_length = mask_length
        self.mask_prob = mask_prob
        self.mask_selection = mask_selection
        self.mask_other = mask_other
        self.no_mask_overlap = no_mask_overlap
        self.mask_min_space = mask_min_space
        self.mask_channel_length = mask_channel_length
        self.mask_channel_prob = mask_channel_prob
        self.mask_channel_selection = mask_channel_selection
        self.mask_channel_other = mask_channel_other
        self.no_mask_channel_overlap = no_mask_channel_overlap
        self.mask_channel_min_space = mask_channel_min_space
        self.conv_pos = conv_pos
        self.conv_pos_groups = conv_pos_groups
        self.conv_pos_batch_norm = conv_pos_batch_norm
        self.latent_temp = latent_temp
        self.skip_masked = skip_masked
        self.skip_nomask = skip_nomask
        self.checkpoint_activations = checkpoint_activations
        self.required_seq_len_multiple = required_seq_len_multiple
        self.depthwise_conv_kernel_size = depthwise_conv_kernel_size
        self.attn_type = attn_type
        self.pos_enc_type = pos_enc_type
        self.fp16 = fp16

class Model_Config(dict):
    def __getattr__(*args):
        val = dict.get(*args)
        return Model_Config(val) if type(val) is dict else val

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__  

class HubertModel(BaseFairseqModel):
    def __init__(self, cfg):
        super().__init__()
        feature_enc_layers = eval(cfg.conv_feature_layers)
        self.embed = feature_enc_layers[-1][0]
        self.feature_extractor = ConvFeatureExtractionModel(conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias)
        feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
        self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / 16000
        self.post_extract_proj = (nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None)
        self.mask_prob = cfg.mask_prob
        self.mask_selection = cfg.mask_selection
        self.mask_other = cfg.mask_other
        self.mask_length = cfg.mask_length
        self.no_mask_overlap = cfg.no_mask_overlap
        self.mask_min_space = cfg.mask_min_space
        self.mask_channel_prob = cfg.mask_channel_prob
        self.mask_channel_selection = cfg.mask_channel_selection
        self.mask_channel_other = cfg.mask_channel_other
        self.mask_channel_length = cfg.mask_channel_length
        self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
        self.mask_channel_min_space = cfg.mask_channel_min_space
        self.dropout_input = nn.Dropout(cfg.dropout_input)
        self.dropout_features = nn.Dropout(cfg.dropout_features)
        self.feature_grad_mult = cfg.feature_grad_mult
        self.logit_temp = cfg.logit_temp
        self.skip_masked = cfg.skip_masked
        self.skip_nomask = cfg.skip_nomask
        final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
        self.mask_emb = nn.Parameter(torch.FloatTensor(cfg.encoder_embed_dim).uniform_())
        self.encoder = TransformerEncoder(cfg)
        self.layer_norm = LayerNorm(self.embed)
        self.target_glu = None
        if cfg.target_glu: self.target_glu = nn.Sequential(nn.Linear(final_dim, final_dim * 2), nn.GLU())
        self.untie_final_proj = cfg.untie_final_proj
        self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
        self.num_classes = [504]
        self.label_embs_concat = nn.Parameter(torch.FloatTensor(sum(self.num_classes), final_dim))
        nn.init.uniform_(self.label_embs_concat)

    def upgrade_state_dict_named(self, state_dict, name):
        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    def apply_mask(self, x, padding_mask, target_list):
        B, T, C = x.shape
        if self.mask_prob > 0:
            mask_indices = torch.from_numpy(compute_mask_indices((B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space)).to(x.device)
            x[mask_indices] = self.mask_emb
        else: mask_indices = None

        if self.mask_channel_prob > 0: x[(torch.from_numpy(compute_mask_indices((B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space)).to(x.device).unsqueeze(1).expand(-1, T, -1))] = 0
        return x, mask_indices

    def compute_nce(self, x, pos, negs):
        neg_is_pos = (pos == negs).all(-1)
        logits = torch.cosine_similarity(x.float(), torch.cat([pos.unsqueeze(0), negs], dim=0).float(), dim=-1).type_as(x)
        logits /= self.logit_temp

        if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf")
        return logits.transpose(0, 1)

    def forward_features(self, source):
        if self.feature_grad_mult > 0:
            features = self.feature_extractor(source)
            if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult)
        else:
            with torch.no_grad():
                features = self.feature_extractor(source)
        return features

    def forward_targets(self, features, target_list):
        feat_tsz = features.size(2)
        targ_tsz = min([t.size(1) for t in target_list])

        if self.feat2tar_ratio * feat_tsz > targ_tsz:
            feat_tsz = int(targ_tsz / self.feat2tar_ratio)
            features = features[..., :feat_tsz]

        return features, [t[:, (torch.arange(feat_tsz).float() * self.feat2tar_ratio).long()] for t in target_list]

    def forward_padding_mask(self, features, padding_mask):
        extra = padding_mask.size(1) % features.size(1)
        if extra > 0: padding_mask = padding_mask[:, :-extra]

        return padding_mask.view(padding_mask.size(0), features.size(1), -1).all(-1)

    def forward(self, source, target_list = None, padding_mask = None, mask = True, features_only = False, output_layer = None):
        features = self.forward_features(source)
        if target_list is not None: features, target_list = self.forward_targets(features, target_list)

        features_pen = features.float().pow(2).mean()

        features = self.layer_norm(features.transpose(1, 2))
        unmasked_features = features.clone()

        if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask)
        if self.post_extract_proj is not None: features = self.post_extract_proj(features)

        features = self.dropout_input(features)
        unmasked_features = self.dropout_features(unmasked_features)

        if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list)
        else: x, mask_indices = features, None

        x, _ = self.encoder(x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1)
        if features_only: return {"x": x, "padding_mask": padding_mask, "features": features}

        def compute_pred(proj_x, target, label_embs):
            y = torch.index_select(label_embs, 0, target.long())
            negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)

            if self.target_glu:
                y = self.target_glu(y)
                negs = self.target_glu(negs)

            return self.compute_nce(proj_x, y, negs)

        label_embs_list = self.label_embs_concat.split(self.num_classes, 0)

        if not self.skip_masked:
            masked_indices = torch.logical_and(~padding_mask, mask_indices)
            proj_x_m = self.final_proj(x[masked_indices])
            logit_m_list = [compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) for i, (proj_x_m, t) in enumerate(zip(proj_x_m.chunk(len(target_list), dim=-1) if self.untie_final_proj else [proj_x_m for _ in range(len(target_list))], target_list))]
        else: logit_m_list = [None for _ in target_list]

        if not self.skip_nomask:
            nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
            proj_x_u = self.final_proj(x[nomask_indices])
            logit_u_list = [compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) for i, (proj_x_u, t) in enumerate(zip(proj_x_u.chunk(len(target_list), dim=-1) if self.untie_final_proj else [proj_x_u for _ in range(len(target_list))], target_list))]
        else: logit_u_list = [None for _ in target_list]

        return {"logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen}

    def extract_features(self, source, padding_mask = None, mask = False, ret_conv = False, output_layer = None):
        res = self.forward(source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer)
        return res["features"] if ret_conv else res["x"], res["padding_mask"]

    def get_logits(self, net_output, is_masked=True):
        return [x.float() for x in (net_output["logit_m_list"] if is_masked else net_output["logit_u_list"]) if x is not None]

    def get_targets(self, net_output, is_masked=True):
        return [x.new_zeros(x.size(0), dtype=torch.long) for x in self.get_logits(net_output, is_masked)]

    def get_extra_losses(self, net_output):
        extra_losses, names = [], []

        if "features_pen" in net_output:
            extra_losses.append(net_output["features_pen"])
            names.append("features_pen")

        return extra_losses, names

    def remove_pretraining_modules(self):
        self.target_glu = None
        self.final_proj = None