File size: 59,798 Bytes
6cfcfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 |
import os
import sys
import gzip
import zlib
import tqdm
import torch
import base64
import string
import logging
import tiktoken
import itertools
import numba as nb
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from contextlib import contextmanager
from torch.distributions import Categorical
from functools import cached_property, lru_cache
from dataclasses import dataclass, replace
from torch.nn.functional import scaled_dot_product_attention
sys.path.append(os.getcwd())
from main.library.utils import load_audio
LANGUAGES = {"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", "yue": "cantonese"}
TO_LANGUAGE_CODE = {**{language: code for code, language in LANGUAGES.items()}, "burmese": "my", "valencian": "ca", "flemish": "nl", "haitian": "ht", "letzeburgesch": "lb", "pushto": "ps", "panjabi": "pa", "moldavian": "ro", "moldovan": "ro", "sinhalese": "si", "castilian": "es", "mandarin": "zh"}
_ALIGNMENT_HEADS = {"tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO", "base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m", "small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000", "medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9", "large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj", "large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj", "large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00", "large-v3-turbo": b"ABzY8j^C+e0{>%RARaKHP%t(lGR*)0g!tONPyhe`"}
SAMPLE_RATE, N_FFT, HOP_LENGTH, CHUNK_LENGTH = 16000, 400, 160, 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2
def exact_div(x, y):
assert x % y == 0
return x // y
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH)
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH)
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN)
def load_model(name = "base", device = "cpu"):
checkpoint_file = os.path.join("assets", "models", "speaker_diarization", "models", name + ".pt")
alignment_heads = _ALIGNMENT_HEADS[name]
with open(checkpoint_file, "rb") as fp:
checkpoint = torch.load(fp, map_location=device)
del checkpoint_file
model = Whisper(ModelDimensions(**checkpoint["dims"]))
model.load_state_dict(checkpoint["model_state_dict"])
model.set_alignment_heads(alignment_heads)
return model.to(device)
def merge_punctuations(alignment, prepended, appended):
i = len(alignment) - 2
j = len(alignment) - 1
while i >= 0:
previous = alignment[i]
following = alignment[j]
if previous.word.startswith(" ") and previous.word.strip() in prepended:
following.word = previous.word + following.word
following.tokens = previous.tokens + following.tokens
previous.word = ""
previous.tokens = []
else: j = i
i -= 1
i = 0
j = 1
while j < len(alignment):
previous = alignment[i]
following = alignment[j]
if not previous.word.endswith(" ") and following.word in appended:
previous.word = previous.word + following.word
previous.tokens = previous.tokens + following.tokens
following.word = ""
following.tokens = []
else: i = j
j += 1
class WordTiming:
def __init__(self, word, tokens, start, end, probability):
self.word = word
self.tokens = tokens
self.start = start
self.end = end
self.probability = probability
@contextmanager
def disable_sdpa():
prev_state = MultiHeadAttention.use_sdpa
try:
MultiHeadAttention.use_sdpa = False
yield
finally:
MultiHeadAttention.use_sdpa = prev_state
def median_filter(x, filter_width):
pad_width = filter_width // 2
if x.shape[-1] <= pad_width: return x
if (ndim := x.ndim) <= 2: x = x[None, None, :]
assert (filter_width > 0 and filter_width % 2 == 1)
result = None
x = F.pad(x, (filter_width // 2, filter_width // 2, 0, 0), mode="reflect")
if result is None: result = x.unfold(-1, filter_width, 1).sort()[0][..., filter_width // 2]
if ndim <= 2: result = result[0, 0]
return result
@nb.jit(nopython=True)
def backtrace(trace):
i = trace.shape[0] - 1
j = trace.shape[1] - 1
trace[0, :] = 2
trace[:, 0] = 1
result = []
while i > 0 or j > 0:
result.append((i - 1, j - 1))
if trace[i, j] == 0:
i -= 1
j -= 1
elif trace[i, j] == 1: i -= 1
elif trace[i, j] == 2: j -= 1
else: raise ValueError
return np.array(result)[::-1, :].T
@nb.jit(nopython=True, parallel=True)
def dtw_cpu(x):
N, M = x.shape
cost = np.ones((N + 1, M + 1), dtype=np.float32) * np.inf
trace = -np.ones((N + 1, M + 1), dtype=np.float32)
cost[0, 0] = 0
for j in range(1, M + 1):
for i in range(1, N + 1):
c0 = cost[i - 1, j - 1]
c1 = cost[i - 1, j]
c2 = cost[i, j - 1]
if c0 < c1 and c0 < c2: c, t = c0, 0
elif c1 < c0 and c1 < c2: c, t = c1, 1
else: c, t = c2, 2
cost[i, j] = x[i - 1, j - 1] + c
trace[i, j] = t
return backtrace(trace)
def dtw(x):
return dtw_cpu(x.double().cpu().numpy())
def find_alignment(model, tokenizer, text_tokens, mel, num_frames, *, medfilt_width = 7, qk_scale = 1.0):
if len(text_tokens) == 0: return []
tokens = torch.tensor([*tokenizer.sot_sequence, tokenizer.no_timestamps, *text_tokens, tokenizer.eot]).to(model.device)
QKs = [None] * model.dims.n_text_layer
hooks = [block.cross_attn.register_forward_hook(lambda _, ins, outs, index=i: QKs.__setitem__(index, outs[-1][0])) for i, block in enumerate(model.decoder.blocks)]
with torch.no_grad(), disable_sdpa():
token_probs = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0][len(tokenizer.sot_sequence) :, : tokenizer.eot].softmax(dim=-1)
text_token_probs = token_probs[np.arange(len(text_tokens)), text_tokens].tolist()
for hook in hooks:
hook.remove()
weights = (torch.stack([QKs[_l][_h] for _l, _h in model.alignment_heads.indices().T])[:, :, : num_frames // 2] * qk_scale).softmax(dim=-1)
std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False)
weights = median_filter((weights - mean) / std, medfilt_width)
text_indices, time_indices = dtw(-weights.mean(axis=0)[len(tokenizer.sot_sequence) : -1])
words, word_tokens = tokenizer.split_to_word_tokens(text_tokens + [tokenizer.eot])
if len(word_tokens) <= 1: return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
jump_times = time_indices[np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)] / TOKENS_PER_SECOND
return [WordTiming(word, tokens, start, end, probability) for word, tokens, start, end, probability in zip(words, word_tokens, jump_times[word_boundaries[:-1]], jump_times[word_boundaries[1:]], [np.mean(text_token_probs[i:j]) for i, j in zip(word_boundaries[:-1], word_boundaries[1:])])]
def add_word_timestamps(*, segments, model, tokenizer, mel, num_frames, prepend_punctuations = "\"'“¿([{-", append_punctuations = "\"'.。,,!!??::”)]}、", last_speech_timestamp, **kwargs):
if len(segments) == 0: return
text_tokens_per_segment = [[token for token in segment["tokens"] if token < tokenizer.eot] for segment in segments]
text_tokens = list(itertools.chain.from_iterable(text_tokens_per_segment))
alignment = find_alignment(model, tokenizer, text_tokens, mel, num_frames, **kwargs)
word_durations = np.array([t.end - t.start for t in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = min(0.7, float(np.median(word_durations) if len(word_durations) > 0 else 0.0))
max_duration = median_duration * 2
if len(word_durations) > 0:
sentence_end_marks = ".。!!??"
for i in range(1, len(alignment)):
if alignment[i].end - alignment[i].start > max_duration:
if alignment[i].word in sentence_end_marks: alignment[i].end = alignment[i].start + max_duration
elif alignment[i - 1].word in sentence_end_marks: alignment[i].start = alignment[i].end - max_duration
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
time_offset = segments[0]["seek"] * HOP_LENGTH / SAMPLE_RATE
word_index = 0
for segment, text_tokens in zip(segments, text_tokens_per_segment):
saved_tokens = 0
words = []
while word_index < len(alignment) and saved_tokens < len(text_tokens):
timing = alignment[word_index]
if timing.word: words.append(dict(word=timing.word, start=round(time_offset + timing.start, 2), end=round(time_offset + timing.end, 2), probability=timing.probability))
saved_tokens += len(timing.tokens)
word_index += 1
if len(words) > 0:
if words[0]["end"] - last_speech_timestamp > median_duration * 4 and (words[0]["end"] - words[0]["start"] > max_duration or (len(words) > 1 and words[1]["end"] - words[0]["start"] > max_duration * 2)):
if (len(words) > 1 and words[1]["end"] - words[1]["start"] > max_duration): words[0]["end"] = words[1]["start"] = max(words[1]["end"] / 2, words[1]["end"] - max_duration)
words[0]["start"] = max(0, words[0]["end"] - max_duration)
if (segment["start"] < words[0]["end"] and segment["start"] - 0.5 > words[0]["start"]): words[0]["start"] = max(0, min(words[0]["end"] - median_duration, segment["start"]))
else: segment["start"] = words[0]["start"]
if (segment["end"] > words[-1]["start"] and segment["end"] + 0.5 < words[-1]["end"]): words[-1]["end"] = max(words[-1]["start"] + median_duration, segment["end"])
else: segment["end"] = words[-1]["end"]
last_speech_timestamp = segment["end"]
segment["words"] = words
@lru_cache(maxsize=None)
def mel_filters(device, n_mels):
assert n_mels in {80, 128}
with np.load(os.path.join("assets", "models", "speaker_diarization", "assets", "mel_filters.npz"), allow_pickle=False) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
def log_mel_spectrogram(audio, n_mels = 80, padding = 0, device = None):
if not torch.is_tensor(audio):
if isinstance(audio, str): audio = load_audio(logging.getLogger(__name__), audio, sample_rate=SAMPLE_RATE).astype(np.float32)
audio = torch.from_numpy(audio)
if device is not None: audio = audio.to(device)
if padding > 0: audio = F.pad(audio, (0, padding))
log_spec = torch.clamp(mel_filters(audio.device, n_mels) @ torch.stft(audio, N_FFT, HOP_LENGTH, window=torch.hann_window(N_FFT).to(audio.device), return_complex=True)[..., :-1].abs() ** 2, min=1e-10).log10()
return (torch.maximum(log_spec, log_spec.max() - 8.0) + 4.0) / 4.0
def pad_or_trim(array, length = N_SAMPLES, *, axis = -1):
if torch.is_tensor(array):
if array.shape[axis] > length: array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
def get_end(segments):
return next((w["end"] for s in reversed(segments) for w in reversed(s["words"])), segments[-1]["end"] if segments else None)
def transcribe_function(model, audio, *, verbose = None, temperature = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), compression_ratio_threshold = 2.4, logprob_threshold = -1.0, no_speech_threshold = 0.6, condition_on_previous_text = True, initial_prompt = None, carry_initial_prompt = False, word_timestamps = False, prepend_punctuations = "\"'“¿([{-", append_punctuations = "\"'.。,,!!??::”)]}、", clip_timestamps = "0", hallucination_silence_threshold = None, fp16 = False, **decode_options):
dtype = torch.float32
decode_options["fp16"] = fp16
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
content_frames = mel.shape[-1] - N_FRAMES
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
if decode_options.get("language", None) is None:
if not model.is_multilingual: decode_options["language"] = "vi"
else:
mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
_, probs = model.detect_language(mel_segment)
decode_options["language"] = max(probs, key=probs.get)
if verbose is not None: print(f"{LANGUAGES[decode_options['language']].title()}")
language = decode_options["language"]
task = decode_options.get("task", "transcribe")
tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages, language=language, task=task)
if isinstance(clip_timestamps, str): clip_timestamps = [float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])]
seek_points = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
if len(seek_points) == 0: seek_points.append(0)
if len(seek_points) % 2 == 1: seek_points.append(content_frames)
seek_clips = list(zip(seek_points[::2], seek_points[1::2]))
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
def decode_with_fallback(segment):
temperatures = ([temperature] if isinstance(temperature, (int, float)) else temperature)
decode_result = None
for t in temperatures:
kwargs = {**decode_options}
if t > 0:
kwargs.pop("beam_size", None)
kwargs.pop("patience", None)
else: kwargs.pop("best_of", None)
decode_result = model.decode(segment, DecodingOptions(**kwargs, temperature=t))
needs_fallback = False
if (compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold): needs_fallback = True
if (logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold): needs_fallback = True
if (no_speech_threshold is not None and decode_result.no_speech_prob > no_speech_threshold and logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold): needs_fallback = False
if not needs_fallback: break
return decode_result
clip_idx = 0
seek = seek_clips[clip_idx][0]
input_stride = exact_div(N_FRAMES, model.dims.n_audio_ctx)
time_precision = (input_stride * HOP_LENGTH / SAMPLE_RATE)
all_tokens, all_segments = [], []
prompt_reset_since = 0
remaining_prompt_length = model.dims.n_text_ctx // 2 - 1
if initial_prompt is not None:
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
all_tokens.extend(initial_prompt_tokens)
remaining_prompt_length -= len(initial_prompt_tokens)
else: initial_prompt_tokens = []
def new_segment(*, start, end, tokens, result):
tokens = tokens.tolist()
return {"seek": seek, "start": start, "end": end, "text": tokenizer.decode([token for token in tokens if token < tokenizer.eot]), "tokens": tokens, "temperature": result.temperature, "avg_logprob": result.avg_logprob, "compression_ratio": result.compression_ratio, "no_speech_prob": result.no_speech_prob}
with tqdm.tqdm(total=content_frames, unit="frames", disable=verbose is not False) as pbar:
last_speech_timestamp = 0.0
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek < seek_clip_start: seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips): seek = seek_clips[clip_idx][0]
continue
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
mel_segment = mel[:, seek : seek + segment_size]
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)
if carry_initial_prompt: decode_options["prompt"] = initial_prompt_tokens + all_tokens[max(len(initial_prompt_tokens), prompt_reset_since):][-remaining_prompt_length:]
else: decode_options["prompt"] = all_tokens[prompt_reset_since:]
result = decode_with_fallback(mel_segment)
tokens = torch.tensor(result.tokens)
if no_speech_threshold is not None:
should_skip = result.no_speech_prob > no_speech_threshold
if (logprob_threshold is not None and result.avg_logprob > logprob_threshold):
should_skip = False
if should_skip:
seek += segment_size
continue
previous_seek = seek
current_segments = []
def word_anomaly_score(word):
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15: score += 1.0
if duration < 0.133: score += (0.133 - duration) * 15
if duration > 2.0: score += duration - 2.0
return score
def is_segment_anomaly(segment):
if segment is None or not segment["words"]: return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments):
return next((s for s in segments if s["words"]), None)
timestamp_tokens = tokens.ge(tokenizer.timestamp_begin)
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
consecutive.add_(1)
if len(consecutive) > 0:
slices = consecutive.tolist()
if single_timestamp_ending:
slices.append(len(tokens))
last_slice = 0
for current_slice in slices:
sliced_tokens = tokens[last_slice:current_slice]
current_segments.append(new_segment(start=time_offset + (sliced_tokens[0].item() - tokenizer.timestamp_begin) * time_precision, end=time_offset + (sliced_tokens[-1].item() - tokenizer.timestamp_begin) * time_precision, tokens=sliced_tokens, result=result))
last_slice = current_slice
if single_timestamp_ending: seek += segment_size
else: seek += (tokens[last_slice - 1].item() - tokenizer.timestamp_begin) * input_stride
else:
duration = segment_duration
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
if (len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin): duration = (timestamps[-1].item() - tokenizer.timestamp_begin) * time_precision
current_segments.append(new_segment(start=time_offset, end=time_offset + duration, tokens=tokens, result=result))
seek += segment_size
if word_timestamps:
add_word_timestamps(segments=current_segments, model=model, tokenizer=tokenizer, mel=mel_segment, num_frames=segment_size, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, last_speech_timestamp=last_speech_timestamp)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset: seek = round(last_word_end * FRAMES_PER_SECOND)
if hallucination_silence_threshold is not None:
threshold = hallucination_silence_threshold
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset: seek = round(last_word_end * FRAMES_PER_SECOND) if (window_end_time - last_word_end) > threshold else (previous_seek + segment_size)
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * FRAMES_PER_SECOND)
continue
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]: continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(current_segments[si + 1 :])
hal_next_start = next_segment["words"][0]["start"] if next_segment is not None else (time_offset + segment_duration)
if (segment["start"] - hal_last_end > threshold or segment["start"] < threshold or segment["start"] - time_offset < 2.0) and (hal_next_start - segment["end"] > threshold or is_segment_anomaly(next_segment) or window_end_time - segment["end"] < 2.0):
seek = round(max(time_offset + 1, segment["start"]) * FRAMES_PER_SECOND)
if content_duration - segment["end"] < threshold: seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None: last_speech_timestamp = last_word_end
for _, segment in enumerate(current_segments):
if segment["start"] == segment["end"] or segment["text"].strip() == "":
segment["text"] = ""
segment["tokens"] = []
segment["words"] = []
all_segments.extend([{"id": i, **segment} for i, segment in enumerate(current_segments, start=len(all_segments))])
all_tokens.extend([token for segment in current_segments for token in segment["tokens"]])
if not condition_on_previous_text or result.temperature > 0.5: prompt_reset_since = len(all_tokens)
pbar.update(min(content_frames, seek) - previous_seek)
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]), segments=all_segments, language=language)
def compression_ratio(text):
text_bytes = text.encode("utf-8")
return len(text_bytes) / len(zlib.compress(text_bytes))
def sinusoids(length, channels, max_timescale=10000):
assert channels % 2 == 0
scaled_time = torch.arange(length)[:, np.newaxis] * torch.exp(-(np.log(max_timescale) / (channels // 2 - 1)) * torch.arange(channels // 2))[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
@torch.no_grad()
def detect_language_function(model, mel, tokenizer = None):
if tokenizer is None: tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages)
if (tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence): raise ValueError
single = mel.ndim == 2
if single: mel = mel.unsqueeze(0)
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state): mel = model.encoder(mel)
n_audio = mel.shape[0]
logits = model.logits(torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device), mel)[:, 0]
mask = torch.ones(logits.shape[-1], dtype=torch.bool)
mask[list(tokenizer.all_language_tokens)] = False
logits[:, mask] = -np.inf
language_tokens = logits.argmax(dim=-1)
language_probs = [{c: logits.softmax(dim=-1).cpu()[i, j].item() for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)} for i in range(n_audio)]
if single:
language_tokens = language_tokens[0]
language_probs = language_probs[0]
return language_tokens, language_probs
@lru_cache(maxsize=None)
def get_tokenizer(multilingual, *, num_languages = 99, language = None, task = None):
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE: language = TO_LANGUAGE_CODE[language]
else: raise ValueError
if multilingual:
encoding_name = "multilingual"
language = language or "en"
task = task or "transcribe"
else:
encoding_name = "gpt2"
language = None
task = None
return Tokenizer(encoding_name=encoding_name, num_languages=num_languages, language=language, task=task)
@lru_cache(maxsize=None)
def get_encoding(name = "gpt2", num_languages = 99):
vocab_path = os.path.join("assets", "models", "speaker_diarization", "assets", f"{name}.tiktoken")
ranks = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in open(vocab_path) if line)}
n_vocab = len(ranks)
special_tokens = {}
specials = ["<|endoftext|>", "<|startoftranscript|>", *[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]], "<|translate|>", "<|transcribe|>", "<|startoflm|>", "<|startofprev|>", "<|nospeech|>", "<|notimestamps|>", *[f"<|{i * 0.02:.2f}|>" for i in range(1501)]]
for token in specials:
special_tokens[token] = n_vocab
n_vocab += 1
return tiktoken.Encoding(name=os.path.basename(vocab_path), explicit_n_vocab=n_vocab, pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""", mergeable_ranks=ranks, special_tokens=special_tokens)
class DecodingOptions:
def __init__(self, task = "transcribe", language = None, temperature = 0.0, sample_len = None, best_of = None, beam_size = None, patience = None, length_penalty = None, prompt = None, prefix = None, suppress_tokens = "-1", suppress_blank = True, without_timestamps = False, max_initial_timestamp = 1.0, fp16 = False):
self.task = task
self.language = language
self.temperature = temperature
self.sample_len = sample_len
self.best_of = best_of
self.beam_size = beam_size
self.patience = patience
self.length_penalty = length_penalty
self.prompt = prompt
self.prefix = prefix
self.suppress_tokens = suppress_tokens
self.suppress_blank = suppress_blank
self.without_timestamps = without_timestamps
self.max_initial_timestamp = max_initial_timestamp
self.fp16 = fp16
@torch.no_grad()
def decode_function(model, mel, options = DecodingOptions(), **kwargs):
if single := mel.ndim == 2: mel = mel.unsqueeze(0)
if kwargs: options = replace(options, **kwargs)
result = DecodingTask(model, options).run(mel)
return result[0] if single else result
@dataclass
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
class LayerNorm(nn.LayerNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype))
class Conv1d(nn.Conv1d):
def _conv_forward(self, x, weight, bias):
return super()._conv_forward(x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype))
class TextDecoder(nn.Module):
def __init__(self, n_vocab, n_ctx, n_state, n_head, n_layer):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
self.blocks = nn.ModuleList([ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)])
self.ln = LayerNorm(n_state)
self.register_buffer("mask", torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1), persistent=False)
def forward(self, x, xa, kv_cache = None):
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = (self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]).to(xa.dtype)
for block in self.blocks:
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
x = self.ln(x)
return (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
class AudioEncoder(nn.Module):
def __init__(self, n_mels, n_ctx, n_state, n_head, n_layer):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
self.blocks = nn.ModuleList([ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)])
self.ln_post = LayerNorm(n_state)
def forward(self, x):
x = F.gelu(self.conv2(F.gelu(self.conv1(x)))).permute(0, 2, 1)
assert x.shape[1:] == self.positional_embedding.shape
x = (x + self.positional_embedding).to(x.dtype)
for block in self.blocks:
x = block(x)
return self.ln_post(x)
class Whisper(nn.Module):
def __init__(self, dims):
super().__init__()
self.dims = dims
self.encoder = AudioEncoder(self.dims.n_mels, self.dims.n_audio_ctx, self.dims.n_audio_state, self.dims.n_audio_head, self.dims.n_audio_layer)
self.decoder = TextDecoder(self.dims.n_vocab, self.dims.n_text_ctx, self.dims.n_text_state, self.dims.n_text_head, self.dims.n_text_layer)
all_heads = torch.zeros(self.dims.n_text_layer, self.dims.n_text_head, dtype=torch.bool)
all_heads[self.dims.n_text_layer // 2 :] = True
self.register_buffer("alignment_heads", all_heads.to_sparse(), persistent=False)
def set_alignment_heads(self, dump):
self.register_buffer("alignment_heads", torch.from_numpy(np.frombuffer(gzip.decompress(base64.b85decode(dump)), dtype=bool).copy()).reshape(self.dims.n_text_layer, self.dims.n_text_head).to_sparse(), persistent=False)
def embed_audio(self, mel):
return self.encoder(mel)
def logits(self, tokens, audio_features):
return self.decoder(tokens, audio_features)
def forward(self, mel, tokens):
return self.decoder(tokens, self.encoder(mel))
@property
def device(self):
return next(self.parameters()).device
@property
def is_multilingual(self):
return self.dims.n_vocab >= 51865
@property
def num_languages(self):
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
def install_kv_cache_hooks(self, cache = None):
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
cache[module] = output if module not in cache or output.shape[1] > self.dims.n_text_ctx else torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def install_hooks(layer: nn.Module):
if isinstance(layer, MultiHeadAttention):
hooks.append(layer.key.register_forward_hook(save_to_cache))
hooks.append(layer.value.register_forward_hook(save_to_cache))
self.decoder.apply(install_hooks)
return cache, hooks
detect_language = detect_language_function
transcribe = transcribe_function
decode = decode_function
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (MultiHeadAttention(n_state, n_head) if cross_attention else None)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
self.mlp_ln = LayerNorm(n_state)
def forward(self, x, xa = None, mask = None, kv_cache = None):
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
return x + self.mlp(self.mlp_ln(x))
class MultiHeadAttention(nn.Module):
def __init__(self, n_state, n_head):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(self, x, xa = None, mask = None, kv_cache = None):
k, v = (self.key(x if xa is None else xa), self.value(x if xa is None else xa)) if kv_cache is None or xa is None or self.key not in kv_cache else (kv_cache[self.key], kv_cache[self.value])
wv, qk = self.qkv_attention(self.query(x), k, v, mask)
return self.out(wv), qk
def qkv_attention(self, q, k, v, mask = None):
_, n_ctx, _ = q.shape
q, k, v = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3), k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3), v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
return scaled_dot_product_attention(q, k, v, is_causal=mask is not None and n_ctx > 1).permute(0, 2, 1, 3).flatten(start_dim=2), None
class LogitFilter:
def apply(self, logits, tokens):
pass
class SuppressBlank(LogitFilter):
def __init__(self, tokenizer, sample_begin):
self.tokenizer = tokenizer
self.sample_begin = sample_begin
def apply(self, logits, tokens):
if tokens.shape[1] == self.sample_begin: logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf
class SuppressTokens(LogitFilter):
def __init__(self, suppress_tokens):
self.suppress_tokens = list(suppress_tokens)
def apply(self, logits, tokens):
logits[:, self.suppress_tokens] = -np.inf
class Inference:
def logits(self, tokens, audio_features):
pass
def rearrange_kv_cache(self, source_indices):
pass
def cleanup_caching(self):
pass
class PyTorchInference(Inference):
def __init__(self, model, initial_token_length):
self.model = model
self.initial_token_length = initial_token_length
self.kv_cache = {}
self.hooks = []
self.kv_modules = [block.attn.key for block in self.model.decoder.blocks] + [block.attn.value for block in self.model.decoder.blocks]
def logits(self, tokens, audio_features):
if not self.kv_cache: self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
if tokens.shape[-1] > self.initial_token_length: tokens = tokens[:, -1:]
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
def cleanup_caching(self):
for hook in self.hooks:
hook.remove()
self.kv_cache = {}
self.hooks = []
def rearrange_kv_cache(self, source_indices):
if source_indices != list(range(len(source_indices))):
for module in self.kv_modules:
self.kv_cache[module] = self.kv_cache[module][source_indices].detach()
class SequenceRanker:
def rank(self, tokens, sum_logprobs):
pass
class MaximumLikelihoodRanker(SequenceRanker):
def __init__(self, length_penalty):
self.length_penalty = length_penalty
def rank(self, tokens, sum_logprobs):
def scores(logprobs, lengths):
result = []
for logprob, length in zip(logprobs, lengths):
result.append(logprob / (length if self.length_penalty is None else ((5 + length) / 6) ** self.length_penalty))
return result
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, [[len(t) for t in s] for s in tokens])]
class TokenDecoder:
def reset(self):
pass
def update(self, tokens, logits, sum_logprobs):
pass
def finalize(self, tokens, sum_logprobs):
pass
class GreedyDecoder(TokenDecoder):
def __init__(self, temperature, eot):
self.temperature = temperature
self.eot = eot
def update(self, tokens, logits, sum_logprobs):
next_tokens = logits.argmax(dim=-1) if self.temperature == 0 else Categorical(logits=logits / self.temperature).sample()
logprobs = F.log_softmax(logits.float(), dim=-1)
sum_logprobs += logprobs[torch.arange(logprobs.shape[0]), next_tokens] * (tokens[:, -1] != self.eot)
next_tokens[tokens[:, -1] == self.eot] = self.eot
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
return tokens, (tokens[:, -1] == self.eot).all()
def finalize(self, tokens, sum_logprobs):
return F.pad(tokens, (0, 1), value=self.eot), sum_logprobs.tolist()
class BeamSearchDecoder(TokenDecoder):
def __init__(self, beam_size, eot, inference, patience = None):
self.beam_size = beam_size
self.eot = eot
self.inference = inference
self.patience = patience or 1.0
self.max_candidates = round(beam_size * self.patience)
self.finished_sequences = None
assert (self.max_candidates > 0)
def reset(self):
self.finished_sequences = None
def update(self, tokens, logits, sum_logprobs):
if tokens.shape[0] % self.beam_size != 0: raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
n_audio = tokens.shape[0] // self.beam_size
if self.finished_sequences is None: self.finished_sequences = [{} for _ in range(n_audio)]
logprobs = F.log_softmax(logits.float(), dim=-1)
next_tokens, source_indices, finished_sequences = [], [], []
for i in range(n_audio):
scores, sources, finished = {}, {}, {}
for j in range(self.beam_size):
idx = i * self.beam_size + j
prefix = tokens[idx].tolist()
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
sequence = tuple(prefix + [token.item()])
scores[sequence] = (sum_logprobs[idx] + logprob).item()
sources[sequence] = idx
saved = 0
for sequence in sorted(scores, key=scores.get, reverse=True):
if sequence[-1] == self.eot: finished[sequence] = scores[sequence]
else:
sum_logprobs[len(next_tokens)] = scores[sequence]
next_tokens.append(sequence)
source_indices.append(sources[sequence])
saved += 1
if saved == self.beam_size: break
finished_sequences.append(finished)
self.inference.rearrange_kv_cache(source_indices)
assert len(self.finished_sequences) == len(finished_sequences)
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
if len(previously_finished) >= self.max_candidates: break
previously_finished[seq] = newly_finished[seq]
return torch.tensor(next_tokens, device=tokens.device), all(len(sequences) >= self.max_candidates for sequences in self.finished_sequences)
def finalize(self, preceding_tokens, sum_logprobs):
sum_logprobs = sum_logprobs.cpu()
for i, sequences in enumerate(self.finished_sequences):
if (len(sequences) < self.beam_size):
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
sequence = preceding_tokens[i, j].tolist() + [self.eot]
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
if len(sequences) >= self.beam_size: break
return [[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences], [list(sequences.values()) for sequences in self.finished_sequences]
class ApplyTimestampRules(LogitFilter):
def __init__(self, tokenizer, sample_begin, max_initial_timestamp_index):
self.tokenizer = tokenizer
self.sample_begin = sample_begin
self.max_initial_timestamp_index = max_initial_timestamp_index
def apply(self, logits, tokens):
if self.tokenizer.no_timestamps is not None: logits[:, self.tokenizer.no_timestamps] = -np.inf
for k in range(tokens.shape[0]):
sampled_tokens = tokens[k, self.sample_begin :]
seq = [t for t in sampled_tokens.tolist()]
last_was_timestamp = (len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin)
penultimate_was_timestamp = (len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin)
if last_was_timestamp:
if penultimate_was_timestamp: logits[k, self.tokenizer.timestamp_begin :] = -np.inf
else: logits[k, : self.tokenizer.eot] = -np.inf
timestamps = sampled_tokens[sampled_tokens.ge(self.tokenizer.timestamp_begin)]
if timestamps.numel() > 0: logits[k, self.tokenizer.timestamp_begin : timestamps[-1] if last_was_timestamp and not penultimate_was_timestamp else (timestamps[-1] + 1)] = -np.inf
if tokens.shape[1] == self.sample_begin:
logits[:, : self.tokenizer.timestamp_begin] = -np.inf
if self.max_initial_timestamp_index is not None:
last_allowed = (self.tokenizer.timestamp_begin + self.max_initial_timestamp_index)
logits[:, last_allowed + 1 :] = -np.inf
logprobs = F.log_softmax(logits.float(), dim=-1)
for k in range(tokens.shape[0]):
if logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1) > logprobs[k, : self.tokenizer.timestamp_begin].max(): logits[k, : self.tokenizer.timestamp_begin] = -np.inf
class DecodingTask:
def __init__(self, model, options):
self.model = model
language = options.language or "en"
tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages, language=language, task=options.task)
self.tokenizer = tokenizer
self.options = self._verify_options(options)
self.n_group = options.beam_size or options.best_of or 1
self.n_ctx = model.dims.n_text_ctx
self.sample_len = options.sample_len or model.dims.n_text_ctx // 2
self.sot_sequence = tokenizer.sot_sequence
if self.options.without_timestamps: self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
self.initial_tokens = self._get_initial_tokens()
self.sample_begin = len(self.initial_tokens)
self.sot_index = self.initial_tokens.index(tokenizer.sot)
self.inference = PyTorchInference(model, len(self.initial_tokens))
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
self.decoder = BeamSearchDecoder(options.beam_size, tokenizer.eot, self.inference, options.patience) if options.beam_size is not None else GreedyDecoder(options.temperature, tokenizer.eot)
self.logit_filters = []
if self.options.suppress_blank: self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
if self.options.suppress_tokens: self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
if not options.without_timestamps:
max_initial_timestamp_index = None
if options.max_initial_timestamp: max_initial_timestamp_index = round(self.options.max_initial_timestamp / (CHUNK_LENGTH / model.dims.n_audio_ctx))
self.logit_filters.append(ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index))
def _verify_options(self, options):
if options.beam_size is not None and options.best_of is not None: raise ValueError
if options.temperature == 0 and options.best_of is not None: raise ValueError
if options.patience is not None and options.beam_size is None: raise ValueError
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1): raise ValueError
return options
def _get_initial_tokens(self):
tokens = list(self.sot_sequence)
if prefix := self.options.prefix:
prefix_tokens = (self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix)
if self.sample_len is not None: prefix_tokens = prefix_tokens[-(self.n_ctx // 2 - self.sample_len):]
tokens = tokens + prefix_tokens
if prompt := self.options.prompt: tokens = ([self.tokenizer.sot_prev] + (self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt)[-(self.n_ctx // 2 - 1) :] + tokens)
return tuple(tokens)
def _get_suppress_tokens(self):
suppress_tokens = self.options.suppress_tokens
if isinstance(suppress_tokens, str): suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
if -1 in suppress_tokens:
suppress_tokens = [t for t in suppress_tokens if t >= 0]
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
elif suppress_tokens is None or len(suppress_tokens) == 0: suppress_tokens = []
else: assert isinstance(suppress_tokens, list)
suppress_tokens.extend([self.tokenizer.transcribe, self.tokenizer.translate, self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm])
if self.tokenizer.no_speech is not None: suppress_tokens.append(self.tokenizer.no_speech)
return tuple(sorted(set(suppress_tokens)))
def _get_audio_features(self, mel):
if self.options.fp16: mel = mel.half()
audio_features = mel if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state) else self.model.encoder(mel)
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32): return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}")
return audio_features
def _detect_language(self, audio_features, tokens):
languages = [self.options.language] * audio_features.shape[0]
lang_probs = None
if self.options.language is None or self.options.task == "lang_id":
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer)
languages = [max(probs, key=probs.get) for probs in lang_probs]
if self.options.language is None: tokens[:, self.sot_index + 1] = lang_tokens
return languages, lang_probs
def _main_loop(self, audio_features, tokens):
n_batch = tokens.shape[0]
sum_logprobs = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
try:
for i in range(self.sample_len):
logits = self.inference.logits(tokens, audio_features)
if (i == 0 and self.tokenizer.no_speech is not None):
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
logits = logits[:, -1]
for logit_filter in self.logit_filters:
logit_filter.apply(logits, tokens)
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
if completed or tokens.shape[-1] > self.n_ctx: break
finally:
self.inference.cleanup_caching()
return tokens, sum_logprobs, no_speech_probs
@torch.no_grad()
def run(self, mel):
self.decoder.reset()
tokenizer = self.tokenizer
n_audio = mel.shape[0]
audio_features = self._get_audio_features(mel)
tokens = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
languages, language_probs = self._detect_language(audio_features, tokens)
if self.options.task == "lang_id": return [DecodingResult(audio_features=features, language=language, language_probs=probs) for features, language, probs in zip(audio_features, languages, language_probs)]
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
audio_features = audio_features[:: self.n_group]
no_speech_probs = no_speech_probs[:: self.n_group]
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
tokens = tokens.reshape(n_audio, self.n_group, -1)
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
tokens = [[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens]
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
tokens = [t[i].tolist() for i, t in zip(selected, tokens)]
fields = ([tokenizer.decode(t).strip() for t in tokens], languages, tokens, audio_features, [lp / (len(t) + 1) for t, lp in zip(tokens, [lp[i] for i, lp in zip(selected, sum_logprobs)])], no_speech_probs)
if len(set(map(len, fields))) != 1: raise RuntimeError
return [DecodingResult(audio_features=features, language=language, tokens=tokens, text=text, avg_logprob=avg_logprob, no_speech_prob=no_speech_prob, temperature=self.options.temperature, compression_ratio=compression_ratio(text)) for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)]
class DecodingResult:
def __init__(self, audio_features, language, language_probs = None, tokens = None, text = "", avg_logprob = np.nan, no_speech_prob = np.nan, temperature = np.nan, compression_ratio = np.nan):
self.audio_features = audio_features
self.language = language
self.language_probs = language_probs if language_probs is not None else {}
self.tokens = tokens if tokens is not None else []
self.text = text
self.avg_logprob = avg_logprob
self.no_speech_prob = no_speech_prob
self.temperature = temperature
self.compression_ratio = compression_ratio
class Tokenizer:
def __init__(self, encoding_name, num_languages = 2, language = None, task = None, sot_sequence = ()):
self.encoding = get_encoding(name=encoding_name, num_languages=num_languages)
self.num_languages = num_languages
self.language = language
self.task = task
self.sot_sequence = sot_sequence
self.special_tokens = {}
for special in self.encoding.special_tokens_set:
special_token = self.encoding.encode_single_token(special)
self.special_tokens[special] = special_token
sot = self.special_tokens["<|startoftranscript|>"]
langs = tuple(LANGUAGES.keys())[: self.num_languages]
sot_sequence = [sot]
if self.language is not None: sot_sequence.append(sot + 1 + langs.index(self.language))
if self.task is not None: sot_sequence.append(self.special_tokens["<|transcribe|>"] if self.task == "transcribe" else self.special_tokens["<|translate|>"])
self.sot_sequence = tuple(sot_sequence)
def encode(self, text, **kwargs):
return self.encoding.encode(text, **kwargs)
def decode(self, token_ids, **kwargs):
return self.encoding.decode([t for t in token_ids if t < self.timestamp_begin], **kwargs)
def decode_with_timestamps(self, token_ids, **kwargs):
return self.encoding.decode(token_ids, **kwargs)
@cached_property
def eot(self):
return self.encoding.eot_token
@cached_property
def transcribe(self):
return self.special_tokens["<|transcribe|>"]
@cached_property
def translate(self):
return self.special_tokens["<|translate|>"]
@cached_property
def sot(self):
return self.special_tokens["<|startoftranscript|>"]
@cached_property
def sot_lm(self):
return self.special_tokens["<|startoflm|>"]
@cached_property
def sot_prev(self):
return self.special_tokens["<|startofprev|>"]
@cached_property
def no_speech(self):
return self.special_tokens["<|nospeech|>"]
@cached_property
def no_timestamps(self):
return self.special_tokens["<|notimestamps|>"]
@cached_property
def timestamp_begin(self):
return self.special_tokens["<|0.00|>"]
@cached_property
def language_token(self):
if self.language is None: raise ValueError
return self.to_language_token(self.language)
def to_language_token(self, language):
if token := self.special_tokens.get(f"<|{language}|>", None): return token
raise KeyError
@cached_property
def all_language_tokens(self):
result = []
for token, token_id in self.special_tokens.items():
if token.strip("<|>") in LANGUAGES: result.append(token_id)
return tuple(result)[: self.num_languages]
@cached_property
def all_language_codes(self):
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
@cached_property
def sot_sequence_including_notimestamps(self):
return tuple(list(self.sot_sequence) + [self.no_timestamps])
@cached_property
def non_speech_tokens(self):
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
symbols += ("<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split())
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [self.encoding.encode(symbol), self.encoding.encode(" " + symbol)]:
if len(tokens) == 1 or symbol in miscellaneous: result.add(tokens[0])
return tuple(sorted(result))
def split_to_word_tokens(self, tokens):
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}: return self.split_tokens_on_unicode(tokens)
return self.split_tokens_on_spaces(tokens)
def split_tokens_on_unicode(self, tokens):
replacement_char = "\ufffd"
words, word_tokens, current_tokens = [], [], []
unicode_offset = 0
for token in tokens:
current_tokens.append(token)
decoded = self.decode_with_timestamps(current_tokens)
if (replacement_char not in decoded or self.decode_with_timestamps(tokens)[unicode_offset + decoded.index(replacement_char)] == replacement_char):
words.append(decoded)
word_tokens.append(current_tokens)
current_tokens = []
unicode_offset += len(decoded)
return words, word_tokens
def split_tokens_on_spaces(self, tokens):
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
words, word_tokens = [], []
for subword, subword_tokens in zip(subwords, subword_tokens_list):
if (subword_tokens[0] >= self.eot) or (subword.startswith(" ")) or (subword.strip() in string.punctuation) or len(words) == 0:
words.append(subword)
word_tokens.append(subword_tokens)
else:
words[-1] = words[-1] + subword
word_tokens[-1].extend(subword_tokens)
return words, word_tokens |