File size: 14,192 Bytes
6cfcfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import re
import sys
import codecs
import librosa
import logging
import numpy as np
import soundfile as sf
from pydub import AudioSegment
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.configs.config import Config
for l in ["httpx", "httpcore"]:
logging.getLogger(l).setLevel(logging.ERROR)
translations = Config().translations
def check_predictors(method, f0_onnx=False):
if f0_onnx and method not in ["harvest", "dio"]: method += "-onnx"
def download(predictors):
if not os.path.exists(os.path.join("assets", "models", "predictors", predictors)): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cerqvpgbef/", "rot13") + predictors, os.path.join("assets", "models", "predictors", predictors))
model_dict = {**dict.fromkeys(["rmvpe", "rmvpe-legacy"], "rmvpe.pt"), **dict.fromkeys(["rmvpe-onnx", "rmvpe-legacy-onnx"], "rmvpe.onnx"), **dict.fromkeys(["fcpe"], "fcpe.pt"), **dict.fromkeys(["fcpe-legacy"], "fcpe_legacy.pt"), **dict.fromkeys(["fcpe-onnx"], "fcpe.onnx"), **dict.fromkeys(["fcpe-legacy-onnx"], "fcpe_legacy.onnx"), **dict.fromkeys(["crepe-full", "mangio-crepe-full"], "crepe_full.pth"), **dict.fromkeys(["crepe-full-onnx", "mangio-crepe-full-onnx"], "crepe_full.onnx"), **dict.fromkeys(["crepe-large", "mangio-crepe-large"], "crepe_large.pth"), **dict.fromkeys(["crepe-large-onnx", "mangio-crepe-large-onnx"], "crepe_large.onnx"), **dict.fromkeys(["crepe-medium", "mangio-crepe-medium"], "crepe_medium.pth"), **dict.fromkeys(["crepe-medium-onnx", "mangio-crepe-medium-onnx"], "crepe_medium.onnx"), **dict.fromkeys(["crepe-small", "mangio-crepe-small"], "crepe_small.pth"), **dict.fromkeys(["crepe-small-onnx", "mangio-crepe-small-onnx"], "crepe_small.onnx"), **dict.fromkeys(["crepe-tiny", "mangio-crepe-tiny"], "crepe_tiny.pth"), **dict.fromkeys(["crepe-tiny-onnx", "mangio-crepe-tiny-onnx"], "crepe_tiny.onnx"), **dict.fromkeys(["harvest", "dio"], "world.pth")}
if "hybrid" in method:
methods_str = re.search("hybrid\[(.+)\]", method)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
for method in methods:
if method in model_dict: download(model_dict[method])
elif method in model_dict: download(model_dict[method])
def check_embedders(hubert, embedders_mode="fairseq"):
huggingface_url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/rzorqqref/", "rot13")
if hubert in ["contentvec_base", "hubert_base", "japanese_hubert_base", "korean_hubert_base", "chinese_hubert_base", "portuguese_hubert_base"]:
if embedders_mode == "fairseq": hubert += ".pt"
elif embedders_mode == "onnx": hubert += ".onnx"
model_path = os.path.join("assets", "models", "embedders", hubert)
if embedders_mode == "fairseq":
if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "fairseq/", hubert]), model_path)
elif embedders_mode == "onnx":
if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "onnx/", hubert]), model_path)
elif embedders_mode == "transformers":
bin_file = os.path.join(model_path, "model.safetensors")
config_file = os.path.join(model_path, "config.json")
os.makedirs(model_path, exist_ok=True)
if not os.path.exists(bin_file): huggingface.HF_download_file("".join([huggingface_url, "transformers/", hubert, "/model.safetensors"]), bin_file)
if not os.path.exists(config_file): huggingface.HF_download_file("".join([huggingface_url, "transformers/", hubert, "/config.json"]), config_file)
else: raise ValueError(translations["option_not_valid"])
def check_spk_diarization(model_size):
whisper_model = os.path.join("assets", "models", "speaker_diarization", "models", f"{model_size}.pt")
if not os.path.exists(whisper_model): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/", "rot13"), model_size, ".pt"]), whisper_model)
speechbrain_path = os.path.join("assets", "models", "speaker_diarization", "models", "speechbrain")
if not os.path.exists(speechbrain_path): os.makedirs(speechbrain_path, exist_ok=True)
for f in ["classifier.ckpt", "config.json", "embedding_model.ckpt", "hyperparams.yaml", "mean_var_norm_emb.ckpt"]:
speechbrain_model = os.path.join(speechbrain_path, f)
if not os.path.exists(speechbrain_model): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/fcrrpuoenva/", "rot13") + f, speechbrain_model)
def check_audioldm2(model):
for f in ["feature_extractor", "language_model", "projection_model", "scheduler", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "unet", "vae", "vocoder"]:
folder_path = os.path.join("assets", "models", "audioldm2", model, f)
if not os.path.exists(folder_path): os.makedirs(folder_path, exist_ok=True)
for f in ["feature_extractor/preprocessor_config.json","language_model/config.json","language_model/model.safetensors","model_index.json","projection_model/config.json","projection_model/diffusion_pytorch_model.safetensors","scheduler/scheduler_config.json","text_encoder/config.json","text_encoder/model.safetensors","text_encoder_2/config.json","text_encoder_2/model.safetensors","tokenizer/merges.txt","tokenizer/special_tokens_map.json","tokenizer/tokenizer.json","tokenizer/tokenizer_config.json","tokenizer/vocab.json","tokenizer_2/special_tokens_map.json","tokenizer_2/spiece.model","tokenizer_2/tokenizer.json","tokenizer_2/tokenizer_config.json","unet/config.json","unet/diffusion_pytorch_model.safetensors","vae/config.json","vae/diffusion_pytorch_model.safetensors","vocoder/config.json","vocoder/model.safetensors"]:
model_path = os.path.join("assets", "models", "audioldm2", model, f)
if not os.path.exists(model_path): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/nhqvbyqz/", "rot13"), model, "/", f]), model_path)
def load_audio(logger, file, sample_rate=16000, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))
try:
logger.debug(translations['read_sf'])
audio, sr = sf.read(file, dtype=np.float32)
except:
logger.debug(translations['read_librosa'])
audio, sr = librosa.load(file, sr=None)
if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate, res_type="soxr_vhq")
if formant_shifting:
from main.library.algorithm.stftpitchshift import StftPitchShift
pitchshifter = StftPitchShift(1024, 32, sample_rate)
audio = pitchshifter.shiftpitch(audio, factors=1, quefrency=formant_qfrency * 1e-3, distortion=formant_timbre)
except Exception as e:
raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
return audio.flatten()
def pydub_convert(audio):
samples = np.frombuffer(audio.raw_data, dtype=np.int16)
if samples.dtype != np.int16: samples = (samples * 32767).astype(np.int16)
return AudioSegment(samples.tobytes(), frame_rate=audio.frame_rate, sample_width=samples.dtype.itemsize, channels=audio.channels)
def pydub_load(input_path):
try:
if input_path.endswith(".wav"): audio = AudioSegment.from_wav(input_path)
elif input_path.endswith(".mp3"): audio = AudioSegment.from_mp3(input_path)
elif input_path.endswith(".ogg"): audio = AudioSegment.from_ogg(input_path)
else: audio = AudioSegment.from_file(input_path)
except:
audio = AudioSegment.from_file(input_path)
return audio
def load_embedders_model(embedder_model, embedders_mode="fairseq", providers=None):
if embedders_mode == "fairseq": embedder_model += ".pt"
elif embedders_mode == "onnx": embedder_model += ".onnx"
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedders_mode == "fairseq":
from main.library.architectures import fairseq
models, saved_cfg, _ = fairseq.load_model(embedder_model_path)
embed_suffix = ".pt"
hubert_model = models[0]
elif embedders_mode == "onnx":
import onnxruntime
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
embed_suffix, saved_cfg = ".onnx", None
hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=providers)
elif embedders_mode == "transformers":
from torch import nn
from transformers import HubertModel
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
embed_suffix, saved_cfg = ".safetensors", None
hubert_model = HubertModelWithFinalProj.from_pretrained(embedder_model_path)
else: raise ValueError(translations["option_not_valid"])
except Exception as e:
raise RuntimeError(translations["read_model_error"].format(e=e))
return hubert_model, saved_cfg, embed_suffix
def cut(audio, sr, db_thresh=-60, min_interval=250):
from main.inference.preprocess import Slicer, get_rms
class Slicer2(Slicer):
def slice2(self, waveform):
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
if samples.shape[0] <= self.min_length: return [(waveform, 0, samples.shape[0])]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start, clip_start = None, 0
for i, rms in enumerate(rms_list):
if rms < self.threshold:
if silence_start is None: silence_start = i
continue
if silence_start is None: continue
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
clip_start = pos_r
silence_start = None
total_frames = rms_list.shape[0]
if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))
if not sil_tags: return [(waveform, 0, samples.shape[-1])]
else:
chunks = []
if sil_tags[0][0] > 0: chunks.append((self._apply_slice(waveform, 0, sil_tags[0][0]), 0, sil_tags[0][0] * self.hop_size))
for i in range(len(sil_tags) - 1):
chunks.append((self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), sil_tags[i][1] * self.hop_size, sil_tags[i + 1][0] * self.hop_size))
if sil_tags[-1][1] < total_frames: chunks.append((self._apply_slice(waveform, sil_tags[-1][1], total_frames), sil_tags[-1][1] * self.hop_size, samples.shape[-1]))
return chunks
slicer = Slicer2(sr=sr, threshold=db_thresh, min_interval=min_interval)
return slicer.slice2(audio)
def restore(segments, total_len, dtype=np.float32):
out = []
last_end = 0
for start, end, processed_seg in segments:
if start > last_end: out.append(np.zeros(start - last_end, dtype=dtype))
out.append(processed_seg)
last_end = end
if last_end < total_len: out.append(np.zeros(total_len - last_end, dtype=dtype))
return np.concatenate(out, axis=-1) |