File size: 473 Bytes
c464395 e9e7628 deac1ce bc81f54 c464395 bc81f54 e9e7628 9d171cc c464395 e9e7628 29e43f4 e9e7628 6bf674d e9e7628 5b445a1 3199196 e9e7628 9d171cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import gradio as gr
import whisperx
import whisper
import torch
import spaces
@spaces.GPU
def transcribe(audio_file):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Transcribe with original Whisper
model = whisper.load_model("medium", device)
result = model.transcribe(audio_file)
return result
inputs = gr.Audio(sources="upload", type="filepath")
outputs = gr.JSON()
gr.Interface(fn=transcribe, inputs=inputs, outputs=outputs).launch()
|