File size: 1,605 Bytes
9747991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import streamlit as st
from document_chat import ingest_pdf, process_query_with_memory
from langchain.memory import ConversationBufferMemory

# Configure Streamlit app
st.set_page_config(page_title="AI Document Q&A Chatbot", layout="wide")
st.title("📄 AI-Powered Document Chatbot")
st.write("Upload a document and ask questions!")

# Upload document
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
if uploaded_file:
    file_path = "uploaded_doc.pdf"
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())

    st.success("File uploaded! Processing...")
    ingest_pdf(file_path)

# Initialize memory if not exists
if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

query = st.text_input("Ask a question:")
if query:
    with st.spinner("Thinking..."):
        response = process_query_with_memory(query, st.session_state["memory"])
        st.session_state["memory"].save_context({"input": query}, {"output": response})
        st.write(response)

# Show chat history
if st.session_state["memory"].chat_memory.messages:
    st.subheader("Chat History")
    for i in range(0, len(st.session_state["memory"].chat_memory.messages), 2):
        user_message = st.session_state["memory"].chat_memory.messages[i].content
        bot_response = st.session_state["memory"].chat_memory.messages[i + 1].content if i + 1 < len(st.session_state["memory"].chat_memory.messages) else "..."
        st.write(f"**User:** {user_message}")
        st.write(f"**Bot:** {bot_response}")