Spaces:
Sleeping
Sleeping
import os | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.llms import HuggingFaceHub | |
# Constants | |
CHROMA_DB_PATH = "chroma_db" | |
SENTENCE_TRANSFORMER_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # Corrected model name | |
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Free chatbot model from Hugging Face | |
# Initialize vector store | |
def initialize_vector_store(): | |
"""Initialize or load ChromaDB vector store""" | |
embeddings = HuggingFaceEmbeddings(model_name=SENTENCE_TRANSFORMER_MODEL) | |
vector_store = Chroma(persist_directory=CHROMA_DB_PATH, embedding_function=embeddings) | |
return vector_store | |
vector_store = initialize_vector_store() | |
def ingest_pdf(pdf_path): | |
"""Processes a PDF, splits text, and stores embeddings in ChromaDB.""" | |
loader = PyMuPDFLoader(pdf_path) | |
documents = loader.load() | |
# Split text into smaller chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
split_docs = text_splitter.split_documents(documents) | |
# Store in vector database | |
vector_store.add_documents(split_docs) | |
vector_store.persist() | |
def process_query_with_memory(query, chat_history=[]): | |
"""Retrieves relevant document chunks and generates a conversational response.""" | |
retriever = vector_store.as_retriever() | |
# Initialize chat memory | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# Load a free Hugging Face model | |
llm = HuggingFaceHub(repo_id=LLM_MODEL, model_kwargs={"max_new_tokens": 500}) | |
# Create a conversational retrieval chain | |
qa_chain = ConversationalRetrievalChain( | |
llm=llm, | |
retriever=retriever, | |
memory=memory | |
) | |
return qa_chain.run({"question": query, "chat_history": chat_history}) | |