Spaces:
Sleeping
Sleeping
import os | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.llms import HuggingFaceHub | |
# Constants | |
CHROMA_DB_PATH = "chroma_db" | |
SENTENCE_TRANSFORMER_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta" | |
# Initialize vector store | |
def initialize_vector_store(): | |
embeddings = HuggingFaceEmbeddings(model_name=SENTENCE_TRANSFORMER_MODEL) | |
return Chroma(persist_directory=CHROMA_DB_PATH, embedding_function=embeddings) | |
vector_store = initialize_vector_store() | |
def ingest_pdf(pdf_path): | |
"""Loads, splits, and stores PDF content in a vector database.""" | |
loader = PyMuPDFLoader(pdf_path) | |
documents = loader.load() | |
# Optimized text splitting: Smaller chunks, no overlap to prevent redundancy | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0) | |
split_docs = text_splitter.split_documents(documents) | |
# Add documents to vector store and persist | |
vector_store.add_documents(split_docs) | |
vector_store.persist() | |
def process_query_with_memory(query, chat_memory): | |
"""Processes user queries while maintaining conversational memory.""" | |
retriever = vector_store.as_retriever(search_kwargs={"k": 3}) # Optimized retrieval | |
# Debug: Print retrieved documents | |
retrieved_docs = retriever.get_relevant_documents(query) | |
print("Retrieved Docs:\n", [doc.page_content for doc in retrieved_docs]) | |
# Initialize LLM | |
llm = HuggingFaceHub(repo_id=LLM_MODEL, model_kwargs={"max_new_tokens": 500}) | |
# Create conversational retrieval chain | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
memory=chat_memory | |
) | |
# Debug: Print chat history to detect repetition | |
chat_history = chat_memory.load_memory_variables({}).get("chat_history", []) | |
print("Chat History:\n", chat_history) | |
# Ensure no duplicate chat history | |
chat_history = list(set(chat_history)) | |
return conversation_chain.run({"question": query, "chat_history": chat_history}) | |
# Initialize chat memory | |
chat_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# Example Usage | |
if __name__ == "__main__": | |
pdf_path = "CV_Data_Science.pdf" | |
ingest_pdf(pdf_path) | |
user_query = "What are my skills in CV?" | |
response = process_query_with_memory(user_query, chat_memory) | |
print("\nChatbot Response:", response) | |