Spaces:
Sleeping
Sleeping
Update document_chat.py
Browse files- document_chat.py +48 -48
document_chat.py
CHANGED
@@ -1,48 +1,48 @@
|
|
1 |
-
import os
|
2 |
-
from langchain.vectorstores import Chroma
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.document_loaders import
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.chains import ConversationalRetrievalChain
|
7 |
-
from langchain.memory import ConversationalBufferMemory
|
8 |
-
from langchain.llms import HuggingFaceHub
|
9 |
-
|
10 |
-
#Constants
|
11 |
-
CHROMA_DB_PATH = "chroma_db"
|
12 |
-
SENTENCE_TRANSFORMER_MODEL = "sentence-ransformers/all-MiniLM-L6=v2"
|
13 |
-
LLM_Model = "HuggingFaceH4/zephyr-7b-beta"
|
14 |
-
|
15 |
-
#Initialize vector store
|
16 |
-
def initialize_vector_store():
|
17 |
-
embeddings = HuggingFaceEmbeddings(model_name = SENTENCE_TRANSFORMER_MODEL)
|
18 |
-
vector_store = Chroma(persist_directory = CHROMA_DB_PATH, embedding_fnction = embeddings)
|
19 |
-
return vector_store
|
20 |
-
vector_store = initialize_vector_store()
|
21 |
-
def ingest_pdf(pdf_path):
|
22 |
-
loader = PyMUPDFLoader(pdf_path)
|
23 |
-
documents = loader.load()
|
24 |
-
|
25 |
-
#split text into smaller chunks
|
26 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 100)
|
27 |
-
splitdocs = text_splitter.split_documents(documents)
|
28 |
-
|
29 |
-
#store in vector db
|
30 |
-
vector_store.add_documents(splitdocs)
|
31 |
-
vector_store.persist()
|
32 |
-
|
33 |
-
def process_query_with_memory(query, chat_history=[]):
|
34 |
-
retriever = vector_store.as_retriever()
|
35 |
-
|
36 |
-
#Initialize chat memory
|
37 |
-
memory = ConversationalBufferMemory(memory_key = "chat_history", return_messages = True)
|
38 |
-
|
39 |
-
#Load a free hugging face model
|
40 |
-
llm = HuggingFaceHub(repo_id = LLM_Model, model_kwargs = {"max_new_tokens": 500})
|
41 |
-
|
42 |
-
#Create a conversational retrieval chain
|
43 |
-
qa_chain = ConversationalRetrievalChain(
|
44 |
-
llm = llm,
|
45 |
-
retriever = retriever,
|
46 |
-
memory = memory)
|
47 |
-
return qa_chain.run({"question":query, "chat_history": chat_history})
|
48 |
-
|
|
|
1 |
+
import os
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.document_loaders import PyMuPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.memory import ConversationalBufferMemory
|
8 |
+
from langchain.llms import HuggingFaceHub
|
9 |
+
|
10 |
+
#Constants
|
11 |
+
CHROMA_DB_PATH = "chroma_db"
|
12 |
+
SENTENCE_TRANSFORMER_MODEL = "sentence-ransformers/all-MiniLM-L6=v2"
|
13 |
+
LLM_Model = "HuggingFaceH4/zephyr-7b-beta"
|
14 |
+
|
15 |
+
#Initialize vector store
|
16 |
+
def initialize_vector_store():
|
17 |
+
embeddings = HuggingFaceEmbeddings(model_name = SENTENCE_TRANSFORMER_MODEL)
|
18 |
+
vector_store = Chroma(persist_directory = CHROMA_DB_PATH, embedding_fnction = embeddings)
|
19 |
+
return vector_store
|
20 |
+
vector_store = initialize_vector_store()
|
21 |
+
def ingest_pdf(pdf_path):
|
22 |
+
loader = PyMUPDFLoader(pdf_path)
|
23 |
+
documents = loader.load()
|
24 |
+
|
25 |
+
#split text into smaller chunks
|
26 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 100)
|
27 |
+
splitdocs = text_splitter.split_documents(documents)
|
28 |
+
|
29 |
+
#store in vector db
|
30 |
+
vector_store.add_documents(splitdocs)
|
31 |
+
vector_store.persist()
|
32 |
+
|
33 |
+
def process_query_with_memory(query, chat_history=[]):
|
34 |
+
retriever = vector_store.as_retriever()
|
35 |
+
|
36 |
+
#Initialize chat memory
|
37 |
+
memory = ConversationalBufferMemory(memory_key = "chat_history", return_messages = True)
|
38 |
+
|
39 |
+
#Load a free hugging face model
|
40 |
+
llm = HuggingFaceHub(repo_id = LLM_Model, model_kwargs = {"max_new_tokens": 500})
|
41 |
+
|
42 |
+
#Create a conversational retrieval chain
|
43 |
+
qa_chain = ConversationalRetrievalChain(
|
44 |
+
llm = llm,
|
45 |
+
retriever = retriever,
|
46 |
+
memory = memory)
|
47 |
+
return qa_chain.run({"question":query, "chat_history": chat_history})
|
48 |
+
|