Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +34 -0
- document_chat.py +48 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from document_chat import ingest_pdf, process_query_with_memory
|
3 |
+
|
4 |
+
#configure streamlit app
|
5 |
+
st.set_page_config(page_title="AI Document Q&A Chatbot", layout="wide")
|
6 |
+
st.title("📄 AI-Powered Document Chatbot")
|
7 |
+
st.write("Upload a document and ask questions!")
|
8 |
+
|
9 |
+
#upload document
|
10 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
11 |
+
if uploaded_file:
|
12 |
+
file_path = "uploaded_doc.pdf"
|
13 |
+
with open(file_path, "wb") as f:
|
14 |
+
f.write(uploaded_file.getbuffer())
|
15 |
+
|
16 |
+
st.success("File uploaded! Processing...")
|
17 |
+
ingest_pdf(file_path)
|
18 |
+
|
19 |
+
if "chat_history" not in st.session_state:
|
20 |
+
st.session_state["chat_history"] = []
|
21 |
+
|
22 |
+
query = st.text_input("Ask a question:")
|
23 |
+
if query:
|
24 |
+
with st.spinner("Thinking..."):
|
25 |
+
response = process_query_with_memory(query, st.session_state["chat_history"])
|
26 |
+
st.session_state["chat_history"].append((query, response))
|
27 |
+
st.write(response)
|
28 |
+
|
29 |
+
# Show chat history
|
30 |
+
if st.session_state["chat_history"]:
|
31 |
+
st.subheader("Chat History")
|
32 |
+
for q, a in st.session_state["chat_history"]:
|
33 |
+
st.write(f"**User:** {q}")
|
34 |
+
st.write(f"**Bot:** {a}")
|
document_chat.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.document_loaders import PyMUPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.memory import ConversationalBufferMemory
|
8 |
+
from langchain.llms import HuggingFaceHub
|
9 |
+
|
10 |
+
#Constants
|
11 |
+
CHROMA_DB_PATH = "chroma_db"
|
12 |
+
SENTENCE_TRANSFORMER_MODEL = "sentence-ransformers/all-MiniLM-L6=v2"
|
13 |
+
LLM_Model = "HuggingFaceH4/zephyr-7b-beta"
|
14 |
+
|
15 |
+
#Initialize vector store
|
16 |
+
def initialize_vector_store():
|
17 |
+
embeddings = HuggingFaceEmbeddings(model_name = SENTENCE_TRANSFORMER_MODEL)
|
18 |
+
vector_store = Chroma(persist_directory = CHROMA_DB_PATH, embedding_fnction = embeddings)
|
19 |
+
return vector_store
|
20 |
+
vector_store = initialize_vector_store()
|
21 |
+
def ingest_pdf(pdf_path):
|
22 |
+
loader = PyMUPDFLoader(pdf_path)
|
23 |
+
documents = loader.load()
|
24 |
+
|
25 |
+
#split text into smaller chunks
|
26 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 100)
|
27 |
+
splitdocs = text_splitter.split_documents(documents)
|
28 |
+
|
29 |
+
#store in vector db
|
30 |
+
vector_store.add_documents(splitdocs)
|
31 |
+
vector_store.persist()
|
32 |
+
|
33 |
+
def process_query_with_memory(query, chat_history=[]):
|
34 |
+
retriever = vector_store.as_retriever()
|
35 |
+
|
36 |
+
#Initialize chat memory
|
37 |
+
memory = ConversationalBufferMemory(memory_key = "chat_history", return_messages = True)
|
38 |
+
|
39 |
+
#Load a free hugging face model
|
40 |
+
llm = HuggingFaceHub(repo_id = LLM_Model, model_kwargs = {"max_new_tokens": 500})
|
41 |
+
|
42 |
+
#Create a conversational retrieval chain
|
43 |
+
qa_chain = ConversationalRetrievalChain(
|
44 |
+
llm = llm,
|
45 |
+
retriever = retriever,
|
46 |
+
memory = memory)
|
47 |
+
return qa_chain.run({"question":query, "chat_history": chat_history})
|
48 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
chromadb
|
3 |
+
pdfminer.six
|
4 |
+
sentence-transformers
|
5 |
+
transformers
|
6 |
+
torch
|
7 |
+
streamlit
|
8 |
+
huggingface_hub
|