Spaces:
Sleeping
Sleeping
Update document_chat.py
Browse files- document_chat.py +13 -35
document_chat.py
CHANGED
@@ -6,62 +6,40 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.llms import HuggingFaceHub
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
-
from langchain.chains import LLMChain
|
11 |
-
from langchain.chains.combine_documents import StuffDocumentsChain # Corrected import
|
12 |
|
13 |
# Constants
|
14 |
CHROMA_DB_PATH = "chroma_db"
|
15 |
-
SENTENCE_TRANSFORMER_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
16 |
-
|
17 |
|
18 |
-
# Initialize vector store
|
19 |
def initialize_vector_store():
|
20 |
embeddings = HuggingFaceEmbeddings(model_name=SENTENCE_TRANSFORMER_MODEL)
|
21 |
-
|
22 |
-
return vector_store
|
23 |
|
24 |
vector_store = initialize_vector_store()
|
25 |
|
26 |
-
# Function to ingest and store the PDF content into the vector store
|
27 |
def ingest_pdf(pdf_path):
|
|
|
28 |
loader = PyMuPDFLoader(pdf_path)
|
29 |
documents = loader.load()
|
30 |
|
31 |
-
# Split text into smaller chunks
|
32 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
33 |
split_docs = text_splitter.split_documents(documents)
|
34 |
|
35 |
-
#
|
36 |
vector_store.add_documents(split_docs)
|
37 |
vector_store.persist()
|
38 |
|
39 |
-
|
40 |
-
|
41 |
retriever = vector_store.as_retriever()
|
42 |
|
43 |
-
#
|
44 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
45 |
-
|
46 |
-
# Load the LLM model from Hugging Face
|
47 |
-
llm = HuggingFaceHub(repo_id=LLM_Model, model_kwargs={"max_new_tokens": 500})
|
48 |
-
|
49 |
-
# Create a PromptTemplate for the question generator
|
50 |
-
question_generator_template = "Generate a question based on the user's request: {query}"
|
51 |
-
question_generator = LLMChain(llm=llm, prompt=PromptTemplate(template=question_generator_template, input_variables=["query"]))
|
52 |
-
|
53 |
-
# Use StuffDocumentsChain to combine the retrieved documents
|
54 |
-
combine_docs_chain = StuffDocumentsChain(llm=llm) # Corrected use of StuffDocumentsChain
|
55 |
-
|
56 |
-
# Create a ConversationalRetrievalChain with the loaded model and retriever
|
57 |
qa_chain = ConversationalRetrievalChain(
|
58 |
-
llm=
|
59 |
retriever=retriever,
|
60 |
-
memory=
|
61 |
-
question_generator=question_generator,
|
62 |
-
combine_docs_chain=combine_docs_chain
|
63 |
)
|
64 |
-
|
65 |
-
# Run the query with the current chat history and return the response
|
66 |
-
response = qa_chain.run({"question": query, "chat_history": chat_history})
|
67 |
-
return response
|
|
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.llms import HuggingFaceHub
|
|
|
|
|
|
|
9 |
|
10 |
# Constants
|
11 |
CHROMA_DB_PATH = "chroma_db"
|
12 |
+
SENTENCE_TRANSFORMER_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
+
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
14 |
|
15 |
+
# Initialize vector store
|
16 |
def initialize_vector_store():
|
17 |
embeddings = HuggingFaceEmbeddings(model_name=SENTENCE_TRANSFORMER_MODEL)
|
18 |
+
return Chroma(persist_directory=CHROMA_DB_PATH, embedding_function=embeddings)
|
|
|
19 |
|
20 |
vector_store = initialize_vector_store()
|
21 |
|
|
|
22 |
def ingest_pdf(pdf_path):
|
23 |
+
"""Loads, splits, and stores PDF content in a vector database."""
|
24 |
loader = PyMuPDFLoader(pdf_path)
|
25 |
documents = loader.load()
|
26 |
|
27 |
+
# Split text into smaller chunks
|
28 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
29 |
split_docs = text_splitter.split_documents(documents)
|
30 |
|
31 |
+
# Re-initialize vector store to ensure persistence
|
32 |
vector_store.add_documents(split_docs)
|
33 |
vector_store.persist()
|
34 |
|
35 |
+
def process_query_with_memory(query, chat_history):
|
36 |
+
"""Processes user queries while maintaining conversational memory."""
|
37 |
retriever = vector_store.as_retriever()
|
38 |
|
39 |
+
# Use session memory (should be handled in Streamlit app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
qa_chain = ConversationalRetrievalChain(
|
41 |
+
llm=HuggingFaceHub(repo_id=LLM_MODEL, model_kwargs={"max_new_tokens": 500}),
|
42 |
retriever=retriever,
|
43 |
+
memory=chat_history
|
|
|
|
|
44 |
)
|
45 |
+
return qa_chain.run({"question": query, "chat_history": chat_history.memory if chat_history else []})
|
|
|
|
|
|