import os from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.llms import HuggingFaceHub from langchain.chains import ConversationalRetrievalChain from langchain.chains.question_answering import load_qa_chain from langchain.llms import HuggingFaceHub from langchain.memory import ConversationBufferMemory # Constants CHROMA_DB_PATH = "chroma_db" SENTENCE_TRANSFORMER_MODEL = "sentence-transformers/all-MiniLM-L6-v2" LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta" # Initialize vector store def initialize_vector_store(): embeddings = HuggingFaceEmbeddings(model_name=SENTENCE_TRANSFORMER_MODEL) return Chroma(persist_directory=CHROMA_DB_PATH, embedding_function=embeddings) vector_store = initialize_vector_store() def ingest_pdf(pdf_path): """Loads, splits, and stores PDF content in a vector database.""" loader = PyMuPDFLoader(pdf_path) documents = loader.load() # Split text into smaller chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) split_docs = text_splitter.split_documents(documents) # Re-initialize vector store to ensure persistence vector_store.add_documents(split_docs) vector_store.persist() def process_query_with_memory(query, chat_memory): """Processes user queries while maintaining conversational memory.""" retriever = vector_store.as_retriever() # Initialize LLM llm = HuggingFaceHub(repo_id=LLM_MODEL, model_kwargs={"max_new_tokens": 500}) # Create Conversational Retrieval Chain correctly conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, memory=chat_memory ) # Fix: Properly load chat history chat_history = chat_memory.load_memory_variables({}).get("chat_history", []) return conversation_chain.run({"question": query, "chat_history": chat_history})