import streamlit as st from document_chat import ingest_pdf, process_query_with_memory from langchain.memory import ConversationBufferMemory # Configure Streamlit app st.set_page_config(page_title="AI Document Q&A Chatbot", layout="wide") st.title("📄 AI-Powered Document Chatbot") st.write("Upload a document and ask questions!") # Upload document uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) if uploaded_file: file_path = "uploaded_doc.pdf" with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) st.success("File uploaded! Processing...") ingest_pdf(file_path) # Initialize memory if not exists if "memory" not in st.session_state: st.session_state["memory"] = ConversationBufferMemory(memory_key="chat_history", return_messages=True) query = st.text_input("Ask a question:") if query: with st.spinner("Thinking..."): response = process_query_with_memory(query, st.session_state["memory"]) st.session_state["memory"].save_context({"input": query}, {"output": response}) st.write(response) # Show chat history if st.session_state["memory"].chat_memory.messages: st.subheader("Chat History") for i in range(0, len(st.session_state["memory"].chat_memory.messages), 2): user_message = st.session_state["memory"].chat_memory.messages[i].content bot_response = st.session_state["memory"].chat_memory.messages[i + 1].content if i + 1 < len(st.session_state["memory"].chat_memory.messages) else "..." st.write(f"**User:** {user_message}") st.write(f"**Bot:** {bot_response}")