|
from fastapi import FastAPI, File, UploadFile
|
|
from fastapi.responses import JSONResponse
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
|
|
app = FastAPI()
|
|
|
|
@app.get("/")
|
|
async def root():
|
|
return {"message": "API is running"}
|
|
|
|
|
|
MODEL_NAME = "ivandrian11/fruit-classifier"
|
|
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
|
model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
|
|
model.eval()
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(DEVICE)
|
|
|
|
VALID_CLASSES = ['apple', 'banana', 'orange', 'tomato', 'bitter gourd', 'capsicum']
|
|
|
|
CLASS_MAPPING = {
|
|
'apple': 'apple',
|
|
'banana': 'banana',
|
|
'orange': 'orange',
|
|
'tomato': 'tomato',
|
|
'bitter gourd': 'bitter gourd',
|
|
'bitter melon': 'bitter gourd',
|
|
'bell pepper': 'capsicum',
|
|
'pepper': 'capsicum',
|
|
'capsicum': 'capsicum',
|
|
'green pepper': 'capsicum',
|
|
'red pepper': 'capsicum',
|
|
'yellow pepper': 'capsicum',
|
|
'granny smith': 'apple',
|
|
'fuji apple': 'apple',
|
|
'gala apple': 'apple',
|
|
'navel orange': 'orange',
|
|
'valencia orange': 'orange'
|
|
}
|
|
|
|
def classify_fruit(image: Image.Image) -> str:
|
|
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
probabilities = F.softmax(outputs.logits, dim=-1)
|
|
confidence, predicted_idx = torch.max(probabilities, dim=-1)
|
|
confidence = confidence.item()
|
|
predicted_label = model.config.id2label[predicted_idx.item()].lower()
|
|
|
|
if confidence < 0.7:
|
|
return "unknown"
|
|
|
|
mapped_class = CLASS_MAPPING.get(predicted_label, None)
|
|
if mapped_class:
|
|
return mapped_class
|
|
|
|
for valid_class in VALID_CLASSES:
|
|
if valid_class in predicted_label:
|
|
return valid_class
|
|
|
|
return "unknown"
|
|
|
|
@app.post("/classify")
|
|
async def classify_image(file: UploadFile = File(...)):
|
|
try:
|
|
image_bytes = await file.read()
|
|
image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
|
result = classify_fruit(image)
|
|
return JSONResponse(content={"prediction": result})
|
|
except Exception as e:
|
|
return JSONResponse(content={"prediction": "unknown", "error": str(e)}, status_code=500) |