Spaces:
Configuration error
Configuration error
# coding: utf-8 | |
import os | |
import gradio as gr | |
import random | |
import torch | |
import cv2 | |
import re | |
import uuid | |
from PIL import Image, ImageDraw, ImageOps, ImageFont | |
import math | |
import numpy as np | |
import argparse | |
import inspect | |
import tempfile | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
from langchain.agents.initialize import initialize_agent | |
from langchain.agents.tools import Tool | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
# Grounding DINO | |
import groundingdino.datasets.transforms as T | |
from groundingdino.models import build_model | |
from groundingdino.util import box_ops | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import wget | |
from llama import Llama | |
GPT4TOOLS_PREFIX = """GPT4Tools can handle various text and visual tasks, such as answering questions and providing in-depth explanations and discussions. It generates human-like text and uses tools to indirectly understand images. When referring to images, GPT4Tools follows strict file name rules. To complete visual tasks, GPT4Tools uses tools and stays loyal to observation outputs. Users can provide new images to GPT4Tools with a description, but tools must be used for subsequent tasks. | |
TOOLS: | |
------ | |
GPT4Tools has access to the following tools:""" | |
GPT4TOOLS_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: | |
``` | |
Thought: Do I need to use a tool? Yes | |
Action: the action to take, should be one of [{tool_names}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
``` | |
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: | |
``` | |
Thought: Do I need to use a tool? No | |
{ai_prefix}: [your response here] | |
``` | |
""" | |
GPT4TOOLS_SUFFIX = """Follow file name rules and do not fake non-existent file names. Remember to provide the image file name loyally from the last tool observation. | |
Previous conversation: | |
{chat_history} | |
New input: {input} | |
GPT4Tools needs to use tools to observe images, not directly imagine them. Thoughts and observations in the conversation are only visible to GPT4Tools. When answering human questions, repeat important information. Let's think step by step. | |
{agent_scratchpad}""" | |
os.makedirs('image', exist_ok=True) | |
def seed_everything(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
return seed | |
def prompts(name, description): | |
def decorator(func): | |
func.name = name | |
func.description = description | |
return func | |
return decorator | |
def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100): | |
new_size = new_image.size | |
old_size = old_image.size | |
easy_img = np.array(new_image) | |
gt_img_array = np.array(old_image) | |
pos_w = (new_size[0] - old_size[0]) // 2 | |
pos_h = (new_size[1] - old_size[1]) // 2 | |
kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma) | |
kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma) | |
kernel = np.multiply(kernel_h, np.transpose(kernel_w)) | |
kernel[steps:-steps, steps:-steps] = 1 | |
kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1] | |
kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)] | |
kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1] | |
kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps] | |
kernel = np.expand_dims(kernel, 2) | |
kernel = np.repeat(kernel, 3, 2) | |
weight = np.linspace(0, 1, steps) | |
top = np.expand_dims(weight, 1) | |
top = np.repeat(top, old_size[0] - 2 * steps, 1) | |
top = np.expand_dims(top, 2) | |
top = np.repeat(top, 3, 2) | |
weight = np.linspace(1, 0, steps) | |
down = np.expand_dims(weight, 1) | |
down = np.repeat(down, old_size[0] - 2 * steps, 1) | |
down = np.expand_dims(down, 2) | |
down = np.repeat(down, 3, 2) | |
weight = np.linspace(0, 1, steps) | |
left = np.expand_dims(weight, 0) | |
left = np.repeat(left, old_size[1] - 2 * steps, 0) | |
left = np.expand_dims(left, 2) | |
left = np.repeat(left, 3, 2) | |
weight = np.linspace(1, 0, steps) | |
right = np.expand_dims(weight, 0) | |
right = np.repeat(right, old_size[1] - 2 * steps, 0) | |
right = np.expand_dims(right, 2) | |
right = np.repeat(right, 3, 2) | |
kernel[:steps, steps:-steps] = top | |
kernel[-steps:, steps:-steps] = down | |
kernel[steps:-steps, :steps] = left | |
kernel[steps:-steps, -steps:] = right | |
pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] | |
gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img | |
gaussian_gt_img = gaussian_gt_img.astype(np.int64) | |
easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img | |
gaussian_img = Image.fromarray(easy_img) | |
return gaussian_img | |
def cut_dialogue_history(history_memory, keep_last_n_paragraphs=1): | |
if history_memory is None or len(history_memory) == 0: | |
return history_memory | |
paragraphs = history_memory.split('Human:') | |
if len(paragraphs) <= keep_last_n_paragraphs: | |
return history_memory | |
return 'Human:' + 'Human:'.join(paragraphs[-1:]) | |
def get_new_image_name(org_img_name, func_name="update"): | |
head_tail = os.path.split(org_img_name) | |
head = head_tail[0] | |
tail = head_tail[1] | |
new_file_name = f'{str(uuid.uuid4())[:8]}.png' | |
return os.path.join(head, new_file_name) | |
class InstructPix2Pix: | |
def __init__(self, device): | |
print(f"Initializing InstructPix2Pix to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", | |
safety_checker=None, | |
torch_dtype=self.torch_dtype).to(device) | |
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
def inference(self, inputs): | |
"""Change style of image.""" | |
print("===>Starting InstructPix2Pix Inference") | |
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
original_image = Image.open(image_path) | |
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
image.save(updated_image_path) | |
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Text2Image: | |
def __init__(self, device): | |
print(f"Initializing Text2Image to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", | |
torch_dtype=self.torch_dtype) | |
self.pipe.to(device) | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, text): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
prompt = text + ', ' + self.a_prompt | |
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] | |
image.save(image_filename) | |
print( | |
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") | |
return image_filename | |
class ImageCaptioning: | |
def __init__(self, device): | |
print(f"Initializing ImageCaptioning to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained( | |
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, image_path): | |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
captions = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") | |
return captions | |
class Image2Canny: | |
def __init__(self, device): | |
print("Initializing Image2Canny") | |
self.low_threshold = 100 | |
self.high_threshold = 200 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
image = np.array(image) | |
canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
canny = canny[:, :, None] | |
canny = np.concatenate([canny, canny, canny], axis=2) | |
canny = Image.fromarray(canny) | |
updated_image_path = get_new_image_name(inputs, func_name="edge") | |
canny.save(updated_image_path) | |
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") | |
return updated_image_path | |
class CannyText2Image: | |
def __init__(self, device): | |
print(f"Initializing CannyText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Line: | |
def __init__(self, device): | |
print("Initializing Image2Line") | |
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
mlsd = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
mlsd.save(updated_image_path) | |
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") | |
return updated_image_path | |
class LineText2Image: | |
def __init__(self, device): | |
print(f"Initializing LineText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Hed: | |
def __init__(self, device): | |
print("Initializing Image2Hed") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
hed = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
hed.save(updated_image_path) | |
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") | |
return updated_image_path | |
class HedText2Image: | |
def __init__(self, device): | |
print(f"Initializing HedText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Scribble: | |
def __init__(self, device): | |
print("Initializing Image2Scribble") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
scribble = self.detector(image, scribble=True) | |
updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
scribble.save(updated_image_path) | |
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") | |
return updated_image_path | |
class ScribbleText2Image: | |
def __init__(self, device): | |
print(f"Initializing ScribbleText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Pose: | |
def __init__(self, device): | |
print("Initializing Image2Pose") | |
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pose = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
pose.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class PoseText2Image: | |
def __init__(self, device): | |
print(f"Initializing PoseText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class SegText2Image: | |
def __init__(self, device): | |
print(f"Initializing SegText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Depth: | |
def __init__(self, device): | |
print("Initializing Image2Depth") | |
self.depth_estimator = pipeline('depth-estimation') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
depth = self.depth_estimator(image)['depth'] | |
depth = np.array(depth) | |
depth = depth[:, :, None] | |
depth = np.concatenate([depth, depth, depth], axis=2) | |
depth = Image.fromarray(depth) | |
updated_image_path = get_new_image_name(inputs, func_name="depth") | |
depth.save(updated_image_path) | |
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class DepthText2Image: | |
def __init__(self, device): | |
print(f"Initializing DepthText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Normal: | |
def __init__(self, device): | |
print("Initializing Image2Normal") | |
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") | |
self.bg_threhold = 0.4 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
original_size = image.size | |
image = self.depth_estimator(image)['predicted_depth'][0] | |
image = image.numpy() | |
image_depth = image.copy() | |
image_depth -= np.min(image_depth) | |
image_depth /= np.max(image_depth) | |
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) | |
x[image_depth < self.bg_threhold] = 0 | |
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) | |
y[image_depth < self.bg_threhold] = 0 | |
z = np.ones_like(x) * np.pi * 2.0 | |
image = np.stack([x, y, z], axis=2) | |
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 | |
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
image = Image.fromarray(image) | |
image = image.resize(original_size) | |
updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
image.save(updated_image_path) | |
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class NormalText2Image: | |
def __init__(self, device): | |
print(f"Initializing NormalText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class VisualQuestionAnswering: | |
def __init__(self, device): | |
print(f"Initializing VisualQuestionAnswering to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.model = BlipForQuestionAnswering.from_pretrained( | |
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, inputs): | |
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
raw_image = Image.open(image_path).convert('RGB') | |
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
answer = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " | |
f"Output Answer: {answer}") | |
return answer | |
class Segmenting: | |
def __init__(self, device): | |
print(f"Inintializing Segmentation to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.model_checkpoint_path = os.path.join("checkpoints","sam") | |
self.download_parameters() | |
self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device) | |
self.sam_predictor = SamPredictor(self.sam) | |
self.mask_generator = SamAutomaticMaskGenerator(self.sam) | |
def download_parameters(self): | |
url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
if not os.path.exists(self.model_checkpoint_path): | |
wget.download(url,out=self.model_checkpoint_path) | |
def show_mask(self, mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([1])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 1]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_box(self, box, ax, label): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
ax.text(x0, y0, label) | |
def get_mask_with_boxes(self, image_pil, image, boxes_filt): | |
size = image_pil.size | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device) | |
masks, _, _ = self.sam_predictor.predict_torch( | |
point_coords = None, | |
point_labels = None, | |
boxes = transformed_boxes.to(self.device), | |
multimask_output = False, | |
) | |
return masks | |
def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases): | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
self.sam_predictor.set_image(image) | |
masks = self.get_mask_with_boxes(image_pil, image, boxes_filt) | |
# draw output image | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for mask in masks: | |
self.show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) | |
updated_image_path = get_new_image_name(image_path, func_name="segmentation") | |
plt.axis('off') | |
plt.savefig( | |
updated_image_path, | |
bbox_inches="tight", dpi=300, pad_inches=0.0 | |
) | |
return updated_image_path | |
def inference_all(self,image_path): | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
masks = self.mask_generator.generate(image) | |
plt.figure(figsize=(20,20)) | |
plt.imshow(image) | |
if len(masks) == 0: | |
return | |
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True) | |
ax = plt.gca() | |
ax.set_autoscale_on(False) | |
polygons = [] | |
color = [] | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.ones((m.shape[0], m.shape[1], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
img[:,:,i] = color_mask[i] | |
ax.imshow(np.dstack((img, m))) | |
updated_image_path = get_new_image_name(image_path, func_name="segment-image") | |
plt.axis('off') | |
plt.savefig( | |
updated_image_path, | |
bbox_inches="tight", dpi=300, pad_inches=0.0 | |
) | |
return updated_image_path | |
class Text2Box: | |
def __init__(self, device): | |
print(f"Initializing ObjectDetection to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.model_checkpoint_path = os.path.join("checkpoints","groundingdino") | |
self.model_config_path = os.path.join("checkpoints","grounding_config.py") | |
self.download_parameters() | |
self.box_threshold = 0.3 | |
self.text_threshold = 0.25 | |
self.grounding = (self.load_model()).to(self.device) | |
def download_parameters(self): | |
url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth" | |
if not os.path.exists(self.model_checkpoint_path): | |
wget.download(url,out=self.model_checkpoint_path) | |
config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
if not os.path.exists(self.model_config_path): | |
wget.download(config_url,out=self.model_config_path) | |
def load_image(self,image_path): | |
# load image | |
image_pil = Image.open(image_path).convert("RGB") # load image | |
transform = T.Compose( | |
[ | |
T.RandomResize([512], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image_pil, image | |
def load_model(self): | |
args = SLConfig.fromfile(self.model_config_path) | |
args.device = self.device | |
model = build_model(args) | |
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
print(load_res) | |
_ = model.eval() | |
return model | |
def get_grounding_boxes(self, image, caption, with_logits=True): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
image = image.to(self.device) | |
with torch.no_grad(): | |
outputs = self.grounding(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = self.grounding.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
return boxes_filt, pred_phrases | |
def plot_boxes_to_image(self, image_pil, tgt): | |
H, W = tgt["size"] | |
boxes = tgt["boxes"] | |
labels = tgt["labels"] | |
assert len(boxes) == len(labels), "boxes and labels must have same length" | |
draw = ImageDraw.Draw(image_pil) | |
mask = Image.new("L", image_pil.size, 0) | |
mask_draw = ImageDraw.Draw(mask) | |
# draw boxes and masks | |
for box, label in zip(boxes, labels): | |
# from 0..1 to 0..W, 0..H | |
box = box * torch.Tensor([W, H, W, H]) | |
# from xywh to xyxy | |
box[:2] -= box[2:] / 2 | |
box[2:] += box[:2] | |
# random color | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
# draw | |
x0, y0, x1, y1 = box | |
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) | |
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) | |
# draw.text((x0, y0), str(label), fill=color) | |
font = ImageFont.load_default() | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((x0, y0), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (x0, y0, w + x0, y0 + h) | |
# bbox = draw.textbbox((x0, y0), str(label)) | |
draw.rectangle(bbox, fill=color) | |
draw.text((x0, y0), str(label), fill="white") | |
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2) | |
return image_pil, mask | |
def inference(self, inputs): | |
image_path, det_prompt = inputs.split(",") | |
print(f"image_path={image_path}, text_prompt={det_prompt}") | |
image_pil, image = self.load_image(image_path) | |
boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt) | |
size = image_pil.size | |
pred_dict = { | |
"boxes": boxes_filt, | |
"size": [size[1], size[0]], # H,W | |
"labels": pred_phrases,} | |
image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0] | |
updated_image_path = get_new_image_name(image_path, func_name="detect-something") | |
updated_image = image_with_box.resize(size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Inpainting: | |
def __init__(self, device): | |
self.device = device | |
self.revision = 'fp16' if 'cuda' in self.device else None | |
self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32 | |
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device) | |
def __call__(self, prompt, original_image, mask_image): | |
update_image = self.inpaint(prompt=prompt, image=original_image.resize((512, 512)), | |
mask_image=mask_image.resize((512, 512))).images[0] | |
return update_image | |
class ObjectSegmenting: | |
template_model = True # Add this line to show this is a template model. | |
def __init__(self, Text2Box:Text2Box, Segmenting:Segmenting): | |
self.grounding = Text2Box | |
self.sam = Segmenting | |
def inference(self, inputs): | |
image_path, det_prompt = inputs.split(",") | |
print(f"image_path={image_path}, text_prompt={det_prompt}") | |
image_pil, image = self.grounding.load_image(image_path) | |
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, det_prompt) | |
updated_image_path = self.sam.segment_image_with_boxes(image_pil,image_path,boxes_filt,pred_phrases) | |
print( | |
f"\nProcessed ObejectSegmenting, Input Image: {image_path}, Object to be Segment {det_prompt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class ImageEditing: | |
template_model = True | |
def __init__(self, Text2Box:Text2Box, Segmenting:Segmenting, Inpainting:Inpainting): | |
print(f"Initializing ImageEditing") | |
self.sam = Segmenting | |
self.grounding = Text2Box | |
self.inpaint = Inpainting | |
def pad_edge(self,mask,padding): | |
#mask Tensor [H,W] | |
mask = mask.numpy() | |
true_indices = np.argwhere(mask) | |
mask_array = np.zeros_like(mask, dtype=bool) | |
for idx in true_indices: | |
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
mask_array[padded_slice] = True | |
new_mask = (mask_array * 255).astype(np.uint8) | |
#new_mask | |
return new_mask | |
def inference_remove(self, inputs): | |
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
return self.inference_replace_sam(f"{image_path},{to_be_removed_txt},background") | |
def inference_replace_sam(self,inputs): | |
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") | |
print(f"image_path={image_path}, to_be_replaced_txt={to_be_replaced_txt}") | |
image_pil, image = self.grounding.load_image(image_path) | |
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, to_be_replaced_txt) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
self.sam.sam_predictor.set_image(image) | |
masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt) | |
mask = torch.sum(masks, dim=0).unsqueeze(0) | |
mask = torch.where(mask > 0, True, False) | |
mask = mask.squeeze(0).squeeze(0).cpu() #tensor | |
mask = self.pad_edge(mask,padding=20) #numpy | |
mask_image = Image.fromarray(mask) | |
updated_image = self.inpaint(prompt=replace_with_txt, original_image=image_pil, | |
mask_image=mask_image) | |
updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
updated_image = updated_image.resize(image_pil.size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class ConversationBot: | |
def __init__(self, load_dict, llm_kwargs): | |
# load_dict = {'VisualQuestionAnswering':'cuda:0', 'ImageCaptioning':'cuda:1',...} | |
print(f"Initializing GPT4Tools, load_dict={load_dict}") | |
if 'ImageCaptioning' not in load_dict: | |
raise ValueError("You have to load ImageCaptioning as a basic function for GPT4Tools") | |
self.models = {} | |
# Load Basic Foundation Models | |
for class_name, device in load_dict.items(): | |
self.models[class_name] = globals()[class_name](device=device) | |
# Load Template Foundation Models | |
for class_name, module in globals().items(): | |
if getattr(module, 'template_model', False): | |
template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if k!='self'} | |
loaded_names = set([type(e).__name__ for e in self.models.values()]) | |
if template_required_names.issubset(loaded_names): | |
self.models[class_name] = globals()[class_name]( | |
**{name: self.models[name] for name in template_required_names}) | |
print(f"All the Available Functions: {self.models}") | |
self.tools = [] | |
for instance in self.models.values(): | |
for e in dir(instance): | |
if e.startswith('inference'): | |
func = getattr(instance, e) | |
self.tools.append(Tool(name=func.name, description=func.description, func=func)) | |
self.llm = Llama(model_kwargs=llm_kwargs) | |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') | |
def init_agent(self, lang): | |
self.memory.clear() #clear previous history | |
if lang=='English': | |
PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = GPT4TOOLS_PREFIX, GPT4TOOLS_FORMAT_INSTRUCTIONS, GPT4TOOLS_SUFFIX | |
place = "Enter text and press enter, or upload an image" | |
label_clear = "Clear" | |
else: | |
raise NotImplementedError(f'{lang} is not supported yet') | |
self.agent = initialize_agent( | |
self.tools, | |
self.llm, | |
agent="conversational-react-description", | |
verbose=True, | |
memory=self.memory, | |
return_intermediate_steps=True, | |
agent_kwargs={'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, | |
'suffix': SUFFIX}, ) | |
return gr.update(visible = True), gr.update(visible = False), gr.update(placeholder=place), gr.update(value=label_clear) | |
def run_text(self, text, state): | |
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer) | |
res = self.agent({"input": text.strip()}) | |
res['output'] = res['output'].replace("\\", "/") | |
response = re.sub('(image/[-\w]*.png)', lambda m: f'})*{m.group(0)}*', res['output']) | |
state = state + [(text, response)] | |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state | |
def run_image(self, image, state, txt, lang='English'): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
print("======>Auto Resize Image...") | |
img = Image.open(image.name) | |
width, height = img.size | |
ratio = min(512 / width, 512 / height) | |
width_new, height_new = (round(width * ratio), round(height * ratio)) | |
width_new = int(np.round(width_new / 64.0)) * 64 | |
height_new = int(np.round(height_new / 64.0)) * 64 | |
img = img.resize((width_new, height_new)) | |
img = img.convert('RGB') | |
img.save(image_filename, "PNG") | |
print(f"Resize image form {width}x{height} to {width_new}x{height_new}") | |
description = self.models['ImageCaptioning'].inference(image_filename) | |
if lang == 'English': | |
Human_prompt = f'\nHuman: Provide an image named {image_filename}. The description is: {description}. Understand the image using tools.\n' | |
AI_prompt = "Received." | |
else: | |
raise NotImplementedError(f'{lang} is not supported yet') | |
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt | |
state = state + [(f"*{image_filename}*", AI_prompt)] | |
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state, f'{txt} {image_filename} ' | |
if __name__ == '__main__': | |
if not os.path.exists("checkpoints"): | |
os.mkdir("checkpoints") | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--base_model', type=str, required=True, help='folder path to the vicuna with tokenizer') | |
parser.add_argument('--lora_model', type=str, required=True, help='folder path to the lora model') | |
parser.add_argument('--load', type=str, default='ImageCaptioning_cuda:0,Text2Image_cuda:0') | |
parser.add_argument('--llm_device', type=str, default='cpu', help='device to run the llm model') | |
parser.add_argument('--temperature', type=float, default=0.1, help='temperature for the llm model') | |
parser.add_argument('--max_new_tokens', type=int, default=512, help='max number of new tokens to generate') | |
parser.add_argument('--top_p', type=float, default=0.75, help='top_p for the llm model') | |
parser.add_argument('--top_k', type=int, default=40, help='top_k for the llm model') | |
parser.add_argument('--num_beams', type=int, default=1, help='num_beams for the llm model') | |
args = parser.parse_args() | |
load_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.load.split(',')} | |
llm_kwargs = {'base_model': args.base_model, | |
'lora_model': args.lora_model, | |
'device': args.llm_device, | |
'temperature': args.temperature, | |
'max_new_tokens': args.max_new_tokens, | |
'top_p': args.top_p, | |
'top_k': args.top_k, | |
'num_beams': args.num_beams} | |
bot = ConversationBot(load_dict=load_dict, llm_kwargs=llm_kwargs) | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(elem_id="chatbot", label="🦙 GPT4Tools").style(height=700) | |
state = gr.State([]) | |
with gr.Row(visible=True) as input_raws: | |
with gr.Column(scale=0.7): | |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style( | |
container=False) | |
with gr.Column(scale=0.15, min_width=0): | |
clear = gr.Button("Clear") | |
with gr.Column(scale=0.15, min_width=0): | |
btn = gr.UploadButton(label="🖼️",file_types=["image"]) | |
# TODO: support more language | |
bot.init_agent('English') | |
txt.submit(bot.run_text, [txt, state], [chatbot, state]) | |
txt.submit(lambda: "", None, txt) | |
btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt]) | |
clear.click(bot.memory.clear) | |
clear.click(lambda: [], None, chatbot) | |
clear.click(lambda: [], None, state) | |
gr.Examples( | |
examples=["Generate an image of a happy vicuna running in the grass", | |
"Tell me a funny story about dog"], | |
inputs=txt | |
) | |
demo.launch(server_name="0.0.0.0", server_port=80) | |