File size: 19,314 Bytes
f8a73ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# mcp_server/product_user_database.py
import os
import pickle
import numpy as np
from typing import Dict, Any, List
from dotenv import load_dotenv
from tqdm import tqdm
from itertools import combinations
from scipy import sparse
from sklearn.metrics.pairwise import cosine_similarity
from mcp.server.fastmcp import FastMCP
from mcp.server.sse import SseServerTransport
from starlette.applications import Starlette
from starlette.routing import Route, Mount
import uvicorn
import pandas as pd
import torch
from transformers import CLIPProcessor, CLIPModel
from openai import AsyncOpenAI
# Load environment variables
load_dotenv()
FASHION_DATA_ROOT = os.getenv("FASHION_DATA_ROOT", "/mnt/d/PostDoc/fifth paper/code/FashionVLM/datasets/FashionRec")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
openai = AsyncOpenAI(api_key=OPENAI_API_KEY, base_url=OPENAI_API_BASE)
###################################
#########Loading Model#############
###################################
# Load CLIP model and processor
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", local_files_only=True)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", local_files_only=True)
clip_model.eval()
# Load item metadata
items_df = pd.read_parquet(f"{FASHION_DATA_ROOT}/meta/items_lite.parquet").set_index("item_id")
outfits_df = pd.read_parquet(f"{FASHION_DATA_ROOT}/meta/outfits_lite.parquet").set_index("outfit_id")
users_df = pd.read_parquet(f"{FASHION_DATA_ROOT}/meta/users_lite.parquet").set_index("user_id")
image_paths = items_df["path"].to_dict()
class InteractionDataManager:
def __init__(self, users_df, outfits_df, items_df):
"""
初始化类,加载数据并设置基本参数
参数:
- users_file: 用户数据文件路径 (parquet)
- outfits_file: Outfit 数据文件路径 (parquet)
- items_file: 单品数据文件路径 (parquet)
"""
self.users_df = users_df
self.outfits_df = outfits_df
self.items_df = items_df
# 创建映射
self.item_id_to_index = {item_id: index for index, item_id in enumerate(self.items_df.index)}
self.index_to_item_id = {index: item_id for index, item_id in enumerate(self.items_df.index)}
self.user_id_to_index = {user_id: index for index, user_id in enumerate(self.users_df.index)}
self.index_to_user_id = {index: user_id for index, user_id in enumerate(self.users_df.index)}
self.outfit_ids_dict = self.outfits_df['item_ids'].to_dict() # get outfit's item ids from outfit id
self.item_category_dict = self.items_df['category'].to_dict() # get item's category from item id
self.item_subcategory_dict = self.items_df['subcategory'].to_dict() # get item's subcategory from item id
self.n_items = len(self.items_df)
self.n_users = len(self.users_df)
self.user_outfit_pairs = []
outfit_set = set(self.outfits_df.index)
for uid, user in self.users_df.iterrows():
oids = user.outfit_ids.split(",")
self.user_outfit_pairs.extend([(uid, oid) for oid in oids if oid in outfit_set])
# 预处理类别到物品ID的映射(使用groupby)
self.subcategory_to_items = self.items_df.groupby('subcategory').apply(lambda x: set(x.index)).to_dict()
# 预处理类别到物品索引的映射(优化查找效率)
self.subcategory_to_indices = {}
for subcategory, item_ids in self.subcategory_to_items.items():
self.subcategory_to_indices[subcategory] = set([self.item_id_to_index[item_id]
for item_id in item_ids
if item_id in self.item_id_to_index])
item_interaction_matrix_path = f'{FASHION_DATA_ROOT}/data/personalized_recommendation/temp_matrix/item_matrix.npz'
try:
self.load_matrix('item', item_interaction_matrix_path)
except FileNotFoundError:
self.build_item_interaction_matrix()
self.save_matrix('item', item_interaction_matrix_path)
user_item_interaction_matrix_path = f'{FASHION_DATA_ROOT}/data/personalized_recommendation/temp_matrix/user_item_matrix.npz'
try:
self.load_matrix('user_item', user_item_interaction_matrix_path)
except FileNotFoundError:
self.build_user_item_interaction_matrix()
self.save_matrix('user_item', user_item_interaction_matrix_path)
# 加载item clip features
with open(f"{FASHION_DATA_ROOT}/meta/clip_features.pkl", "rb") as f:
print("Loading Fashion Features...")
self.clip_features = pickle.load(f)
print("Loading Fashion Features Successfully")
# Prepare embeddings and item IDs
self.item_ids = list(self.clip_features.keys())
self.image_embeddings = np.array([self.clip_features[item_id]["image_embeds"] for item_id in item_ids])
def save_matrix(self, matrix_type, filepath):
"""
保存矩阵到文件
参数:
- matrix_type: 'item' 或 'user_item',指定保存的矩阵类型
- filepath: 保存路径 (例如 'temp/item_matrix.npz')
"""
if matrix_type == 'item':
matrix = self.item_interaction_matrix
elif matrix_type == 'user_item':
matrix = self.user_item_interaction_matrix
else:
raise ValueError("matrix_type must be 'item' or 'user_item'")
if matrix is None:
raise ValueError(f"{matrix_type} matrix has not been built yet.")
sparse.save_npz(filepath, matrix)
print(f"Saved {matrix_type} matrix to {filepath}")
def load_matrix(self, matrix_type, filepath):
"""
从文件加载矩阵
参数:
- matrix_type: 'item' 或 'user_item',指定加载的矩阵类型
- filepath: 加载路径 (例如 'temp/item_matrix.npz')
"""
if not os.path.exists(filepath):
raise FileNotFoundError(f"File {filepath} does not exist.")
matrix = sparse.load_npz(filepath)
if matrix_type == 'item':
self.item_interaction_matrix = matrix
elif matrix_type == 'user_item':
self.user_item_interaction_matrix = matrix
else:
raise ValueError("matrix_type must be 'item' or 'user_item'")
print(f"Loaded {matrix_type} matrix from {filepath}")
return matrix
def build_item_interaction_matrix(self):
"""构建 Item-Item 交互矩阵"""
# 初始化单品交互矩阵
self.item_interaction_matrix = sparse.lil_matrix((self.n_items, self.n_items), dtype=int)
for index, outfit in tqdm(self.outfits_df.iterrows(), total=len(self.outfits_df)):
item_ids = outfit['item_ids'].split(',')
# 记录 item 对的共现
for item_id1, item_id2 in combinations(item_ids, r=2):
if item_id1 in self.item_id_to_index and item_id2 in self.item_id_to_index:
idx1 = self.item_id_to_index[item_id1]
idx2 = self.item_id_to_index[item_id2]
self.item_interaction_matrix[idx1, idx2] += 1
self.item_interaction_matrix[idx2, idx1] += 1 # 无序对称
# 转换为 CSR 格式
self.item_interaction_matrix = self.item_interaction_matrix.tocsr()
return self.item_interaction_matrix
def build_user_item_interaction_matrix(self):
"""构建 User-Item 交互矩阵"""
# 初始化用户-单品交互矩阵
self.user_item_interaction_matrix = sparse.lil_matrix((self.n_users, self.n_items), dtype=int)
for uid, user in tqdm(self.users_df.iterrows(), total=len(self.users_df)):
oids = user["outfit_ids"].split(",")
outfits = self.outfits_df.loc[self.outfits_df.index.isin(oids)]
for oid, outfit in outfits.iterrows():
item_ids = outfit['item_ids'].split(',')
# 记录 user-item 对的出现
for iid in item_ids:
if iid in self.item_id_to_index:
uidx = self.user_id_to_index[uid]
iidx = self.item_id_to_index[iid]
self.user_item_interaction_matrix[uidx, iidx] += 1
# 转换为 CSR 格式
self.user_item_interaction_matrix = self.user_item_interaction_matrix.tocsr()
return self.user_item_interaction_matrix
def _process_interactions_for_category(
self,
matrix,
given_id,
category_indices,
id_to_index
):
"""
处理单个实体与目标类别的交互
参数:
- matrix: 交互矩阵
- given_id: 给定的实体ID(用户或物品)
- category_indices: 目标类别的物品索引集合
返回:
- 交互列表,每个元素为一个包含item_id、interaction_count和score的字典
"""
interactions = []
given_index = id_to_index[given_id]
row = matrix[given_index]
# 提取该行的非零元素
row_start = row.indptr[0]
row_end = row.indptr[1]
col_indices = row.indices[row_start:row_end]
data_values = row.data[row_start:row_end]
# 筛选出属于目标类别的物品
for col_idx, value in zip(col_indices, data_values):
# 检查是否为目标类别的物品
if col_idx in category_indices:
# 获取物品ID
output_id = self.index_to_item_id[col_idx]
interactions.append({
'item_id': output_id,
'interaction_count': int(value),
'score': 0.0
})
return interactions
def get_item_category_interactions(
self,
target_category: str,
given_ids: List[str],
query_type='item', # item or user
top_k=None,
):
"""
获取指定实体(用户或单品)与目标类别的所有交互情况
参数:
- target_category: 待查询的subcategory
- given_ids: List of 目标类别
- query_type: 查询的类别, item或user
- top_k: 返回交互次数最多的前k个物品, 如果是None直接全部返回
返回:
- 列表,包含与目标类别的交互统计信息,按交互次数排序
"""
if query_type == 'item':
matrix = self.item_interaction_matrix
id_to_index = self.item_id_to_index
elif query_type == 'user':
matrix = self.user_item_interaction_matrix
id_to_index = self.user_id_to_index
else:
print(f'query_type must be either item or user but got {query_type}')
return []
# 收集所有交互记录
all_interactions = []
category = target_category
category_indices = self.subcategory_to_indices.get(category, set()) # 获取该类别的所有物品索引
# 获取该实体的所有交互
for given_id in given_ids:
interactions = self._process_interactions_for_category(
matrix, given_id, category_indices, id_to_index
)
# 将交互添加到结果列表
all_interactions.extend(interactions)
# 合并相同物品的交互次数
item_interactions = {}
for interaction in all_interactions:
item_id = interaction['item_id']
count = interaction['interaction_count']
if item_id in item_interactions:
item_interactions[item_id] += count
else:
item_interactions[item_id] = count
# 转换为结果格式
merged_interactions = [
{'item_id': item_id, 'interaction_count': count, 'score': 0.0}
for item_id, count in item_interactions.items()
]
# 排序
if merged_interactions:
merged_interactions.sort(key=lambda x: x['interaction_count'], reverse=True)
# 截取top-k
if top_k and merged_interactions:
merged_interactions = merged_interactions[:top_k]
# 存储结果
return merged_interactions
def rank_by_similarity(self, item_interactions, user_interactions, beta=2.0):
"""
计算用户交互项与商品交互项的相似度并排序
"""
def get_combined_features(feature_dict):
return (feature_dict['image_embeds'] + feature_dict['text_embeds']) / 2
item_feature_list = []
for item in item_interactions:
item_id = item['item_id']
if item_id not in self.clip_features:
raise ValueError(f"Didn't find clip feature of item with id: {item_id}")
item_features = get_combined_features(self.clip_features[item_id])
item_feature_list.append(item_features)
weights = np.array([x['interaction_count'] for x in item_interactions], dtype=np.float32)
weights = weights / np.sum(weights)
item_feature = np.sum(np.stack(item_feature_list, axis=0) * weights[:, np.newaxis], axis=0).reshape(1, -1)
max_count = max((user_item.get('interaction_count', 1) for user_item in user_interactions), default=1)
for user_item in user_interactions:
user_item_id = user_item['item_id']
if user_item_id not in self.clip_features:
raise ValueError(f"Didn't find clip feature of item with id: {user_item_id}")
user_item_features = get_combined_features(self.clip_features[user_item_id]).reshape(1, -1)
similarity = cosine_similarity(user_item_features, item_feature).item()
interaction_count = user_item['interaction_count']
count_factor = (interaction_count / max_count) * beta + 1
user_item['score'] = float(similarity) * count_factor
user_interactions.sort(key=lambda x: x.get('score', 0), reverse=True)
return user_interactions
data_manager = InteractionDataManager(users_df, outfits_df, items_df)
mcp = FastMCP('image-retrieval-server')
@mcp.tool()
async def summary_user_history(user_id: str, target_category: str, list_of_items: List[str]) -> str:
"""Summary user's buying history of specific fashion category given user_id, target_category, list_of_items
After we collect all buying history of this user, we will summarize descriptions of these historical items through LLM.
So we will return user's preference about target_category in sentences.
Args:
user_id (str): User id. Will be provided through prompt
target_category (str): We care about user's buying history of this specific category.
list_of_items: List of item ids for history filtering. Will be provided through prompt
"""
# We need to find the most appropriate item to become the target item
# It should have enough relationship with user and other items
# Specifically, item_interaction larger than 3, history larger than 10
item_interaction_result = data_manager.get_item_category_interactions(
target_category, list_of_items, query_type='item'
)
user_interaction_result = data_manager.get_item_category_interactions(
target_category, [user_id], query_type='user'
)
def get_description(item_id: str) -> str:
return data_manager.items_df.loc[item_id].gen_description
descriptions_for_summary = []
if len(item_interaction_result) == 0:
descriptions_for_summary = [get_description(x['item_id']) for x in user_interaction_result]
else:
if len(user_interaction_result) >= 0:
user_interaction_result = data_manager.rank_by_similarity(
item_interaction_result,
user_interaction_result
)
descriptions_for_summary = [get_description(x['item_id']) for x in user_interaction_result[:5]]
if descriptions_for_summary:
user_message = f"Summary user's preference of {target_category} based on following descriptions of fashion items that user brought previously:"
for x in descriptions_for_summary:
user_message += f"\n{x}"
# Get summary using OpenAI API call
response = await openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": f"You are a user preference summary assistant. Your response is limited in one sentence, staring at 'I prefer ...'"},
{"role": "user", "content": user_message}
],
max_tokens=1000,
)
return response.choices[0].message.content
else:
return ""
user_id = "115"
# 根据类别和given outfit找到这个用户的历史交互
partial_outfit = ["25479e5dacebbfaed18a7dc4830bd5cd19114486", "becc7b46236e9abb6f6760e7a1569b06bbc236c1",
"180c32b5c8c164f3c632f3e73d6002ccfa6fea57"]
target_category = "Skirts"
summary_user_history(user_id, target_category, partial_outfit)
async def compute_text_embedding(text: str) -> np.ndarray:
inputs = clip_processor(text=text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
text_embedding = clip_model.get_text_features(**inputs).numpy()
return text_embedding / np.linalg.norm(text_embedding, axis=1, keepdims=True)
async def find_most_similar_image(text_embedding: np.ndarray) -> Dict[str, Any]:
similarities = np.dot(data_manager.image_embeddings, text_embedding.T).flatten()
most_similar_idx = np.argmax(similarities)
most_similar_item_id = data_manager.item_ids[most_similar_idx]
return {
"image_path": image_paths[most_similar_item_id],
"similarity": float(similarities[most_similar_idx])
}
@mcp.tool()
async def retrieve_image(text: str) -> Dict[str, Any]:
"""Search for the most similar fashion image based on a text description.
Args:
text (str): Text description of the fashion item to search.
"""
print(f"Searching for {text}")
text_embedding = await compute_text_embedding(text)
return await find_most_similar_image(text_embedding)
mcp_server = mcp._mcp_server # 获取内部 Server 对象
sse_transport = SseServerTransport("/messages/")
async def handle_sse(request):
print("Handling SSE connection")
async with sse_transport.connect_sse(request.scope, request.receive, request._send) as streams:
read_stream, write_stream = streams
await mcp_server.run(
read_stream,
write_stream,
mcp_server.create_initialization_options(),
)
# 定义路由
routes = [
Route("/sse", endpoint=handle_sse),
Mount("/messages/", app=sse_transport.handle_post_message),
]
# 创建 Starlette 应用
starlette_app = Starlette(routes=routes)
if __name__ == "__main__":
print("Starting Image Retrieval server with HTTP and SSE...")
uvicorn.run(starlette_app, host="0.0.0.0", port=8001) # 使用 8001 端口,避免与 FashionVLM 冲突
|