Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
from wordcloud import WordCloud, STOPWORDS
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import folium
|
8 |
+
import plotly.express as px
|
9 |
+
import seaborn as sns
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
from streamlit_folium import folium_static
|
13 |
+
|
14 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
15 |
+
|
16 |
+
DATA_ = pd.read_csv("states.csv")
|
17 |
+
st.title("Sentiment Analysis of Tweets")
|
18 |
+
st.sidebar.title("Sentiment Analysis of Tweets")
|
19 |
+
st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
20 |
+
st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
|
21 |
+
|
22 |
+
|
23 |
+
def run():
|
24 |
+
|
25 |
+
@st.cache(persist=True)
|
26 |
+
def load_data():
|
27 |
+
DATA_['tweet_created'] = pd.to_datetime(DATA_['Datetime'])
|
28 |
+
return DATA_
|
29 |
+
data = load_data()
|
30 |
+
|
31 |
+
st.sidebar.subheader("Show random tweet")
|
32 |
+
random_tweet = st.sidebar.radio('Sentiment', ('Positive', 'Neutral', 'Negative'))
|
33 |
+
st.sidebar.markdown(data.query('sentiment_flair == @random_tweet')[["Text"]].sample(n=1).iat[0,0])
|
34 |
+
|
35 |
+
st.sidebar.markdown("### Number of tweets by sentiment")
|
36 |
+
select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
|
37 |
+
sentiment_count = data['sentiment_flair'].value_counts()
|
38 |
+
sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
|
39 |
+
|
40 |
+
if not st.sidebar.checkbox("Hide", True):
|
41 |
+
st.markdown("### Number of tweets by sentiment")
|
42 |
+
if select == "Histogram":
|
43 |
+
fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
|
44 |
+
st.plotly_chart(fig)
|
45 |
+
else:
|
46 |
+
fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
|
47 |
+
st.plotly_chart(fig)
|
48 |
+
|
49 |
+
|
50 |
+
st.sidebar.subheader("When and Where are users tweeting from?")
|
51 |
+
hour = st.sidebar.slider("Hour of day", 0,23)
|
52 |
+
modified_data = data[data['tweet_created'].dt.hour == hour]
|
53 |
+
if not st.sidebar.checkbox("Close", True, key='1'):
|
54 |
+
st.markdown("### Tweets locations based on the time of date")
|
55 |
+
st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
|
56 |
+
st.map(modified_data)
|
57 |
+
if st.sidebar.checkbox("Show Raw Data", False):
|
58 |
+
st.write(modified_data)
|
59 |
+
st.sidebar.subheader("Breakdown language tweets by sentiment")
|
60 |
+
choice = st.sidebar.multiselect('Pick language', ('en', 'hi'), key='0')
|
61 |
+
|
62 |
+
if len(choice) > 0:
|
63 |
+
choice_data = data[data.language.isin(choice)]
|
64 |
+
fig_choice = px.histogram(choice_data, x='language',
|
65 |
+
y='sentiment_flair',
|
66 |
+
histfunc = 'count', color = 'sentiment_flair',
|
67 |
+
facet_col='sentiment_flair',
|
68 |
+
labels={'sentiment_flair':'tweets'}, height=600, width=800)
|
69 |
+
st.plotly_chart(fig_choice)
|
70 |
+
|
71 |
+
st.sidebar.header("Word Cloud")
|
72 |
+
word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('Positive', 'Neutral','Negative'))
|
73 |
+
|
74 |
+
if not st.sidebar.checkbox("Close", True, key='3'):
|
75 |
+
st.header('Word cloud for %s sentiment' % (word_sentiment))
|
76 |
+
df = data[data['sentiment_flair']==word_sentiment]
|
77 |
+
words = ' '.join(df['Text'])
|
78 |
+
processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
|
79 |
+
wordcloud = WordCloud(stopwords=STOPWORDS,
|
80 |
+
background_color='white', height=640, width=800).generate(processed_words)
|
81 |
+
plt.imshow(wordcloud)
|
82 |
+
plt.xticks([])
|
83 |
+
plt.yticks([])
|
84 |
+
st.pyplot()
|
85 |
+
|
86 |
+
#################################### choropleth map #############################################################
|
87 |
+
with open('india_state.json') as file:
|
88 |
+
geojsonData = json.load(file)
|
89 |
+
|
90 |
+
for i in geojsonData['features']:
|
91 |
+
i['id'] = i['properties']['NAME_1']
|
92 |
+
|
93 |
+
map_choropleth_high_public = folium.Map(location = [20.5937,78.9629], zoom_start = 4)
|
94 |
+
df1 = data
|
95 |
+
df1 = df1[df1['location'].notna()]
|
96 |
+
|
97 |
+
def get_state(x):
|
98 |
+
|
99 |
+
states = ["Andaman and Nicobar Islands","Andhra Pradesh","Arunachal Pradesh","Assam","Bihar","Chandigarh","Chhattisgarh",
|
100 |
+
"Dadra and Nagar Haveli","Daman and Diu","Delhi","Goa","Gujarat","Haryana","Himachal Pradesh","Jammu and Kashmir",
|
101 |
+
"Jharkhand","Karnataka","Kerala","Ladakh","Lakshadweep","Madhya Pradesh","Maharashtra","Manipur","Meghalaya",
|
102 |
+
"Mizoram","Nagaland","Odisha","Puducherry","Punjab","Rajasthan","Sikkim","Tamil Nadu","Telangana","Tripura","Uttar Pradesh","Uttarakhand","West Bengal"]
|
103 |
+
|
104 |
+
states_dict = {"Delhi":"New Delhi","Gujarat":"Surat","Haryana":"Gurgaon", "Karnataka":"Bangalore", "Karnataka":"Bengaluru", "Maharashtra":"Pune","Maharashtra":"Mumbai","Maharashtra":"Navi Mumbai","Telangana":"Hyderabad","West Bengal":"Kolkata",
|
105 |
+
"Gujarat":"Surat","Rajasthan":"Kota","Rajasthan":"Jodhpur","Karnataka":"Bengaluru South","Uttar Pradesh":"Lukhnow","Uttar Pradesh":"Noida","Bihar":"Patna","Uttarakhand":"Dehradun","Madhya Pradesh":"Indore" , "Madhya Pradesh":"Bhopal",
|
106 |
+
"Andaman and Nicobar Islands":"Andaman and Nicobar Islands", "Andhra Pradesh":"Andhra Pradesh","Arunachal Pradesh":"Arunachal Pradesh","Assam":"Assam","Bihar":"Bihar",
|
107 |
+
"Chandigarh":"Chandigarh","Chhattisgarh":"Chhattisgarh", "Dadra and Nagar Haveli": "Dadra and Nagar Haveli","Daman and Diu":"Daman and Diu","Delhi":"Delhi",
|
108 |
+
"Goa":"Goa","Gujarat":"Gujarat","Haryana":"Haryana","Himachal Pradesh":"Himachal Pradesh","Jammu and Kashmir":"Jammu and Kashmir", "Jharkhand": "Jharkhand",
|
109 |
+
"Karnataka":"Karnataka","Kerala":"Kerala","Ladakh":"Ladakh","Lakshadweep":"Lakshadweep","Madhya Pradesh":"Madhya Pradesh","Maharashtra":"Maharashtra",
|
110 |
+
"Odisha":"Odisha","Puducherry":"Puducherry","Punjab":"Punjab","Rajasthan":"Rajasthan","Tamil Nadu":"Tamil Nadu","Telangana":"Telangana","Uttar Pradesh":"Uttar Pradesh",
|
111 |
+
"Uttarakhand":"Uttarakhand","West Bengal":"West Bengal","West Bengal":"Calcutta","Uttar Pradesh":"Lucknow"
|
112 |
+
}
|
113 |
+
|
114 |
+
abv = x.split(',')[-1].lstrip()
|
115 |
+
state_name = x.split(',')[0].lstrip()
|
116 |
+
|
117 |
+
if abv in states:
|
118 |
+
state = abv
|
119 |
+
else:
|
120 |
+
if state_name in states_dict.values():
|
121 |
+
state = list(states_dict.keys())[list(states_dict.values()).index(state_name)]
|
122 |
+
|
123 |
+
else:
|
124 |
+
state = 'Non_India'
|
125 |
+
|
126 |
+
return state
|
127 |
+
|
128 |
+
# create abreviated states column
|
129 |
+
df2 = df1.copy()
|
130 |
+
|
131 |
+
df2['states'] = df1['location'].apply(get_state)
|
132 |
+
|
133 |
+
# extract total sentiment per state
|
134 |
+
df_state_sentiment = df2.groupby(['states'])['Label'].value_counts().unstack().fillna(0.0).reset_index()
|
135 |
+
df_state_sentiment['total_sentiment'] = -(df_state_sentiment[0])+df_state_sentiment[1]
|
136 |
+
dff = df_state_sentiment[df_state_sentiment['states'] != 'Non_India']
|
137 |
+
|
138 |
+
folium.Choropleth(geo_data=geojsonData,
|
139 |
+
data=dff,
|
140 |
+
name='CHOROPLETH',
|
141 |
+
key_on='feature.id',
|
142 |
+
columns = ['states','total_sentiment'],
|
143 |
+
fill_color='YlOrRd',
|
144 |
+
fill_opacity=0.7,
|
145 |
+
line_opacity=0.4,
|
146 |
+
legend_name='Sentiments',
|
147 |
+
highlight=True).add_to(map_choropleth_high_public)
|
148 |
+
|
149 |
+
folium.LayerControl().add_to(map_choropleth_high_public)
|
150 |
+
|
151 |
+
#display(map_choropleth_high_public)
|
152 |
+
|
153 |
+
st.sidebar.header("Map Visualisation")
|
154 |
+
if not st.sidebar.checkbox("Close", True, key='4'):
|
155 |
+
folium_static(map_choropleth_high_public)
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == '__main__':
|
159 |
+
run()
|