Anshul3878 commited on
Commit
8b55c03
·
verified ·
1 Parent(s): a5dd085

Upload 8 files

Browse files
Plant_Disease_Prediction_CNN_Image_Classifier.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
class_indices.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"0": "Apple___Apple_scab", "1": "Apple___Black_rot", "2": "Apple___Cedar_apple_rust", "3": "Apple___healthy", "4": "Blueberry___healthy", "5": "Cherry_(including_sour)___Powdery_mildew", "6": "Cherry_(including_sour)___healthy", "7": "Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot", "8": "Corn_(maize)___Common_rust_", "9": "Corn_(maize)___Northern_Leaf_Blight", "10": "Corn_(maize)___healthy", "11": "Grape___Black_rot", "12": "Grape___Esca_(Black_Measles)", "13": "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", "14": "Grape___healthy", "15": "Orange___Haunglongbing_(Citrus_greening)", "16": "Peach___Bacterial_spot", "17": "Peach___healthy", "18": "Pepper,_bell___Bacterial_spot", "19": "Pepper,_bell___healthy", "20": "Potato___Early_blight", "21": "Potato___Late_blight", "22": "Potato___healthy", "23": "Raspberry___healthy", "24": "Soybean___healthy", "25": "Squash___Powdery_mildew", "26": "Strawberry___Leaf_scorch", "27": "Strawberry___healthy", "28": "Tomato___Bacterial_spot", "29": "Tomato___Early_blight", "30": "Tomato___Late_blight", "31": "Tomato___Leaf_Mold", "32": "Tomato___Septoria_leaf_spot", "33": "Tomato___Spider_mites Two-spotted_spider_mite", "34": "Tomato___Target_Spot", "35": "Tomato___Tomato_Yellow_Leaf_Curl_Virus", "36": "Tomato___Tomato_mosaic_virus", "37": "Tomato___healthy"}
config.toml ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [global]
2
+ # If True, will show a warning when you run a Streamlit-enabled script via "python my_script.py".
3
+ # Default: true
4
+ showWarningOnDirectExecution = true
5
+
6
+ [logger]
7
+ # Level of logging: 'error', 'warning', 'info', or 'debug'.
8
+ # Default: 'info'
9
+ level = "debug"
10
+
11
+
12
+
13
+ [runner]
14
+ # Allows you to type a variable or string by itself in a single line of Python code to write it to the app.
15
+ # Default: true
16
+ magicEnabled = true
17
+
18
+
19
+
20
+ [server]
21
+ # List of folders that should not be watched for changes. Relative paths will be taken as relative to the current working directory.
22
+ # Example: ['/home/user1/env', 'relative/path/to/folder']
23
+ # Default: []
24
+ folderWatchBlacklist = ['']
25
+
26
+ # If false, will attempt to open a browser window on start.
27
+ # Default: false unless (1) we are on a Linux box where DISPLAY is unset, or (2) server.liveSave is set.
28
+ headless = true
29
+
30
+ # Immediately share the app in such a way that enables live monitoring, and post-run analysis.
31
+ # Default: false
32
+ liveSave = false
33
+
34
+ # Automatically rerun script when the file is modified on disk.
35
+ # Default: false
36
+ runOnSave = false
37
+
38
+ # The port where the server will listen for client and browser connections.
39
+ # Default: 8501
40
+ port = 80
41
+
42
+ # Enables support for Cross-Origin Request Sharing, for added security.
43
+ # Default: true
44
+ enableCORS = false
45
+
46
+ [browser]
47
+ # Internet address of the server server that the browser should connect to. Can be IP address or DNS name.
48
+ # Default: 'localhost'
49
+ serverAddress = "0.0.0.0"
50
+
51
+ # Whether to send usage statistics to Streamlit.
52
+ # Default: true
53
+ gatherUsageStats = true
54
+
55
+ # Port that the browser should use to connect to the server when in liveSave mode.
56
+ # Default: whatever value is set in server.port.
57
+ serverPort = 80
58
+
credentials.toml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [general]
2
+ email=""
3
+
main.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from PIL import Image
4
+
5
+ import numpy as np
6
+ import tensorflow as tf
7
+ import streamlit as st
8
+
9
+
10
+ working_dir = os.path.dirname(os.path.abspath(__file__))
11
+ model_path = f"{working_dir}/trained_model/plant_disease_prediction_model.h5"
12
+ # Load the pre-trained model
13
+ model = tf.keras.models.load_model(model_path)
14
+
15
+ # loading the class names
16
+ class_indices = json.load(open(f"{working_dir}/class_indices.json"))
17
+
18
+
19
+ # Function to Load and Preprocess the Image using Pillow
20
+ def load_and_preprocess_image(image_path, target_size=(224, 224)):
21
+ # Load the image
22
+ img = Image.open(image_path)
23
+ # Resize the image
24
+ img = img.resize(target_size)
25
+ # Convert the image to a numpy array
26
+ img_array = np.array(img)
27
+ # Add batch dimension
28
+ img_array = np.expand_dims(img_array, axis=0)
29
+ # Scale the image values to [0, 1]
30
+ img_array = img_array.astype('float32') / 255.
31
+ return img_array
32
+
33
+
34
+ # Function to Predict the Class of an Image
35
+ def predict_image_class(model, image_path, class_indices):
36
+ preprocessed_img = load_and_preprocess_image(image_path)
37
+ predictions = model.predict(preprocessed_img)
38
+ predicted_class_index = np.argmax(predictions, axis=1)[0]
39
+ predicted_class_name = class_indices[str(predicted_class_index)]
40
+ return predicted_class_name
41
+
42
+
43
+ # Streamlit App
44
+ st.title('Plant Disease Classifier')
45
+
46
+ uploaded_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
47
+
48
+ if uploaded_image is not None:
49
+ image = Image.open(uploaded_image)
50
+ col1, col2 = st.columns(2)
51
+
52
+ with col1:
53
+ resized_img = image.resize((150, 150))
54
+ st.image(resized_img)
55
+
56
+ with col2:
57
+ if st.button('Classify'):
58
+ # Preprocess the uploaded image and predict the class
59
+ prediction = predict_image_class(model, uploaded_image, class_indices)
60
+ st.success(f'Prediction: {str(prediction)}')
plant_disease_prediction_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0d196c3af57c9db66072e031922fedef1a0980f2ff5d859ec203f72a31f0646
3
+ size 573706416
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ numpy==1.26.3
2
+ streamlit==1.30.0
3
+ tensorflow==2.15.0.post1
trained_model_link.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ trained plant disease prediction model link: https://drive.google.com/file/d/1rKh-IElSdHTqax7XdfSdZTn-r8T_qWPf/view?usp=drive_link