Spaces:
Build error
Build error
File size: 8,183 Bytes
05355ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Importing essential libraries and modules
from flask import Flask, render_template, request, Markup
import numpy as np
import pandas as pd
from utils.disease import disease_dic
from utils.fertilizer import fertilizer_dic
import requests
import config
import pickle
import io
import torch
from torchvision import transforms
from PIL import Image
from utils.model import ResNet9
# ==============================================================================================
# -------------------------LOADING THE TRAINED MODELS -----------------------------------------------
# Loading plant disease classification model
disease_classes = ['Apple___Apple_scab',
'Apple___Black_rot',
'Apple___Cedar_apple_rust',
'Apple___healthy',
'Blueberry___healthy',
'Cherry_(including_sour)___Powdery_mildew',
'Cherry_(including_sour)___healthy',
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
'Corn_(maize)___Common_rust_',
'Corn_(maize)___Northern_Leaf_Blight',
'Corn_(maize)___healthy',
'Grape___Black_rot',
'Grape___Esca_(Black_Measles)',
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
'Grape___healthy',
'Orange___Haunglongbing_(Citrus_greening)',
'Peach___Bacterial_spot',
'Peach___healthy',
'Pepper,_bell___Bacterial_spot',
'Pepper,_bell___healthy',
'Potato___Early_blight',
'Potato___Late_blight',
'Potato___healthy',
'Raspberry___healthy',
'Soybean___healthy',
'Squash___Powdery_mildew',
'Strawberry___Leaf_scorch',
'Strawberry___healthy',
'Tomato___Bacterial_spot',
'Tomato___Early_blight',
'Tomato___Late_blight',
'Tomato___Leaf_Mold',
'Tomato___Septoria_leaf_spot',
'Tomato___Spider_mites Two-spotted_spider_mite',
'Tomato___Target_Spot',
'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
'Tomato___Tomato_mosaic_virus',
'Tomato___healthy']
disease_model_path = '/plant_disease_model.pth'
disease_model = ResNet9(3, len(disease_classes))
disease_model.load_state_dict(torch.load(
disease_model_path, map_location=torch.device('cpu')))
disease_model.eval()
# Loading crop recommendation model
crop_recommendation_model_path = 'models/RandomForest.pkl'
crop_recommendation_model = pickle.load(
open(crop_recommendation_model_path, 'rb'))
# =========================================================================================
# Custom functions for calculations
def weather_fetch(city_name):
"""
Fetch and returns the temperature and humidity of a city
:params: city_name
:return: temperature, humidity
"""
api_key = config.weather_api_key
base_url = "http://api.openweathermap.org/data/2.5/weather?"
complete_url = base_url + "appid=" + api_key + "&q=" + city_name
response = requests.get(complete_url)
x = response.json()
if x["cod"] != "404":
y = x["main"]
temperature = round((y["temp"] - 273.15), 2)
humidity = y["humidity"]
return temperature, humidity
else:
return None
def predict_image(img, model=disease_model):
"""
Transforms image to tensor and predicts disease label
:params: image
:return: prediction (string)
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
])
image = Image.open(io.BytesIO(img))
img_t = transform(image)
img_u = torch.unsqueeze(img_t, 0)
# Get predictions from model
yb = model(img_u)
# Pick index with highest probability
_, preds = torch.max(yb, dim=1)
prediction = disease_classes[preds[0].item()]
# Retrieve the class label
return prediction
# ===============================================================================================
# ------------------------------------ FLASK APP -------------------------------------------------
app = Flask(__name__)
# render home page
@ app.route('/')
def home():
title = 'Harvestify - Home'
return render_template('index.html', title=title)
# render crop recommendation form page
@ app.route('/crop-recommend')
def crop_recommend():
title = 'Harvestify - Crop Recommendation'
return render_template('crop.html', title=title)
# render fertilizer recommendation form page
@ app.route('/fertilizer')
def fertilizer_recommendation():
title = 'Harvestify - Fertilizer Suggestion'
return render_template('fertilizer.html', title=title)
# render disease prediction input page
# ===============================================================================================
# RENDER PREDICTION PAGES
# render crop recommendation result page
@ app.route('/crop-predict', methods=['POST'])
def crop_prediction():
title = 'Harvestify - Crop Recommendation'
if request.method == 'POST':
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
ph = float(request.form['ph'])
rainfall = float(request.form['rainfall'])
# state = request.form.get("stt")
city = request.form.get("city")
if weather_fetch(city) != None:
temperature, humidity = weather_fetch(city)
data = np.array([[N, P, K, temperature, humidity, ph, rainfall]])
my_prediction = crop_recommendation_model.predict(data)
final_prediction = my_prediction[0]
return render_template('crop-result.html', prediction=final_prediction, title=title)
else:
return render_template('try_again.html', title=title)
# render fertilizer recommendation result page
@ app.route('/fertilizer-predict', methods=['POST'])
def fert_recommend():
title = 'Harvestify - Fertilizer Suggestion'
crop_name = str(request.form['cropname'])
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
# ph = float(request.form['ph'])
df = pd.read_csv('Data/fertilizer.csv')
nr = df[df['Crop'] == crop_name]['N'].iloc[0]
pr = df[df['Crop'] == crop_name]['P'].iloc[0]
kr = df[df['Crop'] == crop_name]['K'].iloc[0]
n = nr - N
p = pr - P
k = kr - K
temp = {abs(n): "N", abs(p): "P", abs(k): "K"}
max_value = temp[max(temp.keys())]
if max_value == "N":
if n < 0:
key = 'NHigh'
else:
key = "Nlow"
elif max_value == "P":
if p < 0:
key = 'PHigh'
else:
key = "Plow"
else:
if k < 0:
key = 'KHigh'
else:
key = "Klow"
response = Markup(str(fertilizer_dic[key]))
return render_template('fertilizer-result.html', recommendation=response, title=title)
# render disease prediction result page
@app.route('/disease-predict', methods=['GET', 'POST'])
def disease_prediction():
title = 'Harvestify - Disease Detection'
if request.method == 'POST':
if 'file' not in request.files:
return redirect(request.url)
file = request.files.get('file')
if not file:
return render_template('disease.html', title=title)
try:
img = file.read()
prediction = predict_image(img)
prediction = Markup(str(disease_dic[prediction]))
return render_template('disease-result.html', prediction=prediction, title=title)
except:
pass
return render_template('disease.html', title=title)
# ===============================================================================================
if __name__ == '__main__':
app.run(debug=False)
|