import torch import torch.nn as nn import torch.nn.functional as F def ConvBlock(in_channels, out_channels, pool=False): layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True)] if pool: layers.append(nn.MaxPool2d(4)) return nn.Sequential(*layers) # Model Architecture class ResNet9(nn.Module): def __init__(self, in_channels, num_diseases): super().__init__() self.conv1 = ConvBlock(in_channels, 64) self.conv2 = ConvBlock(64, 128, pool=True) # out_dim : 128 x 64 x 64 self.res1 = nn.Sequential(ConvBlock(128, 128), ConvBlock(128, 128)) self.conv3 = ConvBlock(128, 256, pool=True) # out_dim : 256 x 16 x 16 self.conv4 = ConvBlock(256, 512, pool=True) # out_dim : 512 x 4 x 44 self.res2 = nn.Sequential(ConvBlock(512, 512), ConvBlock(512, 512)) self.classifier = nn.Sequential(nn.MaxPool2d(4), nn.Flatten(), nn.Linear(512, num_diseases)) def forward(self, xb): # xb is the loaded batch out = self.conv1(xb) out = self.conv2(out) out = self.res1(out) + out out = self.conv3(out) out = self.conv4(out) out = self.res2(out) + out out = self.classifier(out) return out