Spaces:
Runtime error
Runtime error
| # https://huggingface.co/spaces/asigalov61/LAKH-MIDI-Dataset-Search | |
| import os | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| from sentence_transformers import SentenceTransformer | |
| from sentence_transformers import util | |
| import numpy as np | |
| from datasets import load_dataset | |
| import gradio as gr | |
| import copy | |
| import random | |
| import pickle | |
| import zlib | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| import TMIDIX | |
| import matplotlib.pyplot as plt | |
| #========================================================================================================== | |
| def find_midi(input_search_string): | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| print('-' * 70) | |
| print('Req search str:', input_search_string) | |
| print('-' * 70) | |
| print('Searching...') | |
| query_embedding = model.encode([input_search_string]) | |
| # Compute cosine similarity between query and each sentence in the corpus | |
| similarities = util.cos_sim(query_embedding, corpus_embeddings) | |
| top_ten_matches_idxs = np.argsort(-similarities)[0][:10].tolist() | |
| # Find the index of the most similar sentence | |
| closest_index = np.argmax(similarities) | |
| closest_index_match_ratio = max(similarities[0].tolist()) | |
| best_corpus_match = mc_dataset['train'][closest_index.tolist()] | |
| print('Done!') | |
| print('=' * 70) | |
| print('Match corpus index', closest_index) | |
| print('Match corpus ratio', closest_index_match_ratio) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| LAKH_hash = best_corpus_match['location'].split('/')[-1].split('.mid')[0] | |
| LAKH_caption = str(best_corpus_match['caption']) | |
| zlib_file_name = all_MIDI_files_names[MIDI_files_names.index(LAKH_hash)][1] | |
| print('Fetching MIDI score...') | |
| with open(zlib_file_name, 'rb') as f: | |
| compressed_data = f.read() | |
| # Decompress the data | |
| decompressed_data = zlib.decompress(compressed_data) | |
| # Convert the bytes back to a list using pickle | |
| scores_data = pickle.loads(decompressed_data) | |
| fnames = [f[0] for f in scores_data] | |
| fnameidx = fnames.index(LAKH_hash) | |
| MIDI_score_metadata = scores_data[fnameidx][1] | |
| MIDI_score_data = scores_data[fnameidx][2] | |
| print('Rendering results...') | |
| print('=' * 70) | |
| print('MIDi Title:', LAKH_hash) | |
| print('Sample INTs', MIDI_score_data[:12]) | |
| print('=' * 70) | |
| if len(MIDI_score_data) != 0: | |
| song = MIDI_score_data | |
| song_f = [] | |
| time = 0 | |
| dur = 0 | |
| vel = 90 | |
| pitch = 0 | |
| channel = 0 | |
| patches = [-1] * 16 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| for ss in song: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 512: | |
| dur = (ss-256) * 16 | |
| if 512 <= ss <= 640: | |
| patch = (ss-512) | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| if 640 < ss < 768: | |
| ptc = (ss-640) | |
| if 768 < ss < 896: | |
| vel = (ss - 768) | |
| song_f.append(['note', time, dur, channel, ptc, vel, patch ]) | |
| patches = [0 if x==-1 else x for x in patches] | |
| print('=' * 70) | |
| #=============================================================================== | |
| output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, | |
| output_signature = 'LAKH MIDI Dataset Search', | |
| output_file_name = LAKH_hash, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| new_fn = LAKH_hash + '.mid' | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=soundfont, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| #======================================================== | |
| output_midi_title = str(LAKH_hash) | |
| output_midi_caption = str(best_corpus_match['caption']) | |
| output_midi_summary = str(MIDI_score_metadata) | |
| output_midi_caps = str(best_corpus_match) | |
| output_midi = str(new_fn) | |
| output_audio = (16000, audio) | |
| output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True) | |
| print('Output MIDI file name:', output_midi) | |
| print('Output MIDI caption string:', output_midi_caption) | |
| print('Output MIDI title:', output_midi_title) | |
| print('Output MIDI summary:', output_midi_summary) | |
| print('Output MidiCaps information:', output_midi_caps) | |
| print('=' * 70) | |
| #======================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot | |
| #========================================================================================================== | |
| if __name__ == "__main__": | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
| print('Loading MidiCaps dataset...') | |
| mc_dataset = load_dataset("amaai-lab/MidiCaps") | |
| # mc_fnames = [f['location'].split('/')[-1].split('.mid')[0] for f in mc_dataset['train']] | |
| print('=' * 70) | |
| print('Loading files list...') | |
| all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('LAKH_all_files_names') | |
| MIDI_files_names = [f[0] for f in all_MIDI_files_names] | |
| print('=' * 70) | |
| print('Loading MIDI corpus embeddings...') | |
| corpus_embeddings = np.load('MIDI_corpus_embeddings_all-MiniLM-L6-v2.npz')['data'] | |
| print('Done!') | |
| print('=' * 70) | |
| print('Loading Sentence Transformer model...') | |
| model = SentenceTransformer('all-MiniLM-L6-v2') | |
| print('Done!') | |
| print('=' * 70) | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>LAKH MIDI Dataset Search</h1>") | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Search and explore LAKH MIDI dataset with MidiCaps dataset and sentence transformer</h1>") | |
| gr.Markdown("\n\n" | |
| "This is a demo for MidiCaps dataset\n\n" | |
| "Check out [MidiCaps Dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) on Hugging Face!\n\n" | |
| ) | |
| gr.Markdown("# Enter any desired song description\n\n") | |
| input_search_string = gr.Textbox(label="Search string", value="Cheery pop song about love and happiness") | |
| submit = gr.Button(value='Search') | |
| gr.ClearButton(components=[input_search_string]) | |
| gr.Markdown("# Search results") | |
| output_midi_title = gr.Textbox(label="Output MIDI title") | |
| output_midi_caption = gr.Textbox(label="MIDI caption string") | |
| output_midi_summary = gr.Textbox(label="Aggregated MIDI file text metadata") | |
| output_midi_caps = gr.Textbox(label="MidiCaps dataset information") | |
| output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
| output_plot = gr.Plot(label="Output MIDI score plot") | |
| output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
| run_event = submit.click(find_midi, [input_search_string], | |
| [output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot ]) | |
| app.launch() |