File size: 6,257 Bytes
d414f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import numpy as np
import pandas as pd
import yfinance as yf
import datetime as dt
import plotly.graph_objects as go
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import load_model
import gradio as gr
import warnings
import os
# Suppress warnings
warnings.filterwarnings("ignore")
# Constants
PREDICTION_DAYS = 30
TIME_STEP = 60
DATA_YEARS = 3
# Load model
model = load_model('stock_price_model.h5')
model.make_predict_function() # For faster inference
def preprocess_data(df):
"""Process yfinance data"""
df.columns = [col[0] if isinstance(col, tuple) else col for col in df.columns]
df = df.reset_index().rename(columns={'index': 'Date'})
df = df[['Date', 'High', 'Low', 'Open', 'Close', 'Volume']]
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
return df
def get_stock_data(stock_symbol):
"""Fetch stock data with caching"""
end_date = dt.datetime.now()
start_date = end_date - dt.timedelta(days=365 * DATA_YEARS)
df = yf.download(stock_symbol, start=start_date, end=end_date)
return preprocess_data(df)
def prepare_data(df):
"""Prepare data for LSTM prediction"""
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df['Close'].values.reshape(-1, 1))
# Create dataset using sliding window
X = np.array([scaled_data[i:i + TIME_STEP, 0]
for i in range(len(scaled_data) - TIME_STEP - 1)])
y = scaled_data[TIME_STEP + 1:, 0]
return X.reshape(X.shape[0], TIME_STEP, 1), y, scaler
def predict_future(model, data, scaler):
"""Generate future predictions"""
last_data = data[-TIME_STEP:].reshape(1, TIME_STEP, 1)
future_preds = np.zeros(PREDICTION_DAYS, dtype='float32')
for i in range(PREDICTION_DAYS):
next_pred = model.predict(last_data, verbose=0)[0, 0]
future_preds[i] = next_pred
last_data = np.roll(last_data, -1, axis=1)
last_data[0, -1, 0] = next_pred
return scaler.inverse_transform(future_preds.reshape(-1, 1))
def create_plot(df, pred_data=None, future_data=None, title=""):
"""Create interactive Plotly figure"""
fig = go.Figure()
# Main price line
fig.add_trace(go.Scatter(
x=df.index,
y=df['Close'],
name='Actual Price',
line=dict(color='blue')
))
# Prediction line
if pred_data is not None:
fig.add_trace(go.Scatter(
x=df.index[TIME_STEP + 1:],
y=pred_data[:, 0],
name='Predicted',
line=dict(color='orange')
))
# Future prediction
if future_data is not None:
future_dates = pd.date_range(
start=df.index[-1],
periods=PREDICTION_DAYS + 1
)[1:]
fig.add_trace(go.Scatter(
x=future_dates,
y=future_data[:, 0],
name='30-Day Forecast',
line=dict(color='green')
))
fig.update_layout(
title=title,
template='plotly_dark',
margin=dict(l=20, r=20, t=40, b=20)
)
return fig
def predict_stock(stock_symbol):
"""Main prediction function for Gradio"""
try:
df = get_stock_data(stock_symbol)
X, y, scaler = prepare_data(df)
# Make predictions
y_pred = model.predict(X)
y_pred = scaler.inverse_transform(y_pred)
# Future prediction
future_prices = predict_future(
model,
scaler.transform(df['Close'].values.reshape(-1, 1)),
scaler
)
# Create plots
main_plot = create_plot(
df,
pred_data=y_pred,
title=f"{stock_symbol} Price Prediction"
)
future_plot = create_plot(
df,
future_data=future_prices,
title=f"{stock_symbol} 30-Day Forecast"
)
# Technical indicators
df['SMA_50'] = df['Close'].rolling(50).mean()
df['SMA_200'] = df['Close'].rolling(200).mean()
tech_fig = go.Figure()
tech_fig.add_trace(go.Scatter(
x=df.index, y=df['Close'],
name='Price', line=dict(color='blue')))
tech_fig.add_trace(go.Scatter(
x=df.index, y=df['SMA_50'],
name='50-Day SMA', line=dict(color='orange')))
tech_fig.add_trace(go.Scatter(
x=df.index, y=df['SMA_200'],
name='200-Day SMA', line=dict(color='red')))
tech_fig.update_layout(
title=f"{stock_symbol} Technical Indicators",
template='plotly_dark'
)
return (
f"${df['Close'].iloc[-1]:.2f}",
df.index[-1].strftime('%Y-%m-%d'),
main_plot,
future_plot,
tech_fig
)
except Exception as e:
raise gr.Error(f"Prediction failed: {str(e)}")
# Gradio Interface
with gr.Blocks(title="Stock Prediction", theme=gr.themes.Default()) as demo:
gr.Markdown("# 📈 Real-Time Stock Predictor")
gr.Markdown("Predict stock prices using LSTM neural networks")
with gr.Row():
stock_input = gr.Textbox(
label="Stock Symbol (Examples: TSLA, AAPL, MSFT, AMZN, GOOG, AEP)",
value="TSLA",
placeholder="Enter stock symbol (e.g. AAPL, MSFT)"
)
submit_btn = gr.Button("Predict", variant="primary")
with gr.Row():
with gr.Column():
last_price = gr.Textbox(label="Last Price")
last_date = gr.Textbox(label="Last Date")
with gr.Tabs():
with gr.Tab("Price Prediction"):
main_plot = gr.Plot(label="Price Prediction")
with gr.Tab("30-Day Forecast"):
future_plot = gr.Plot(label="Future Prediction")
with gr.Tab("Technical Indicators"):
tech_plot = gr.Plot(label="Technical Analysis")
submit_btn.click(
fn=predict_stock,
inputs=stock_input,
outputs=[last_price, last_date, main_plot, future_plot, tech_plot]
)
# For Hugging Face Spaces
demo.launch(debug=False) |