Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from sentence_transformers import CrossEncoder | |
| # Title and instructions | |
| st.title("Typosquatting Detection App") | |
| st.write("Enter two domains to check if one is a typosquatted variant of the other.") | |
| # Model selection | |
| # model_choice = st.selectbox("Choose a model for detection:", ["CE-typosquat-detect-Canine", "CE-typosquat-detect"]) | |
| # # Load model after selection | |
| # if model_choice: | |
| # model_path = f"./{model_choice}" | |
| # model = CrossEncoder(model_path) | |
| model_choice="CE-typosquat-detect-Canine" | |
| # User inputs for domains and threshold | |
| domain = st.text_input("Enter the legitimate domain name:") | |
| typosquat = st.text_input("Enter the potentially typosquatted domain name:") | |
| threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.5) | |
| # Typosquatting detection on button click | |
| if st.button("Check Typosquatting"): | |
| if domain and typosquat: | |
| inputs = [(typosquat, domain)] | |
| prediction = model.predict(inputs)[0] | |
| # Display result | |
| if prediction > threshold: | |
| st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") | |
| else: | |
| st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") | |
| else: | |
| st.error("Please enter both a legitimate domain and a potentially typosquatted domain.") | |